Feedback-Driven Threading:
Power-Efficient and High-Performance Execution of
Multi-threaded Workloads on CMPs

M. Aater Suleman

ECE Department
The University of Texas at Austin

suleman®@hps.utexas.edu

Abstract

Extracting high-performance from the emerging Chip Mulliges-
sors (CMPs) requires that the application be divided intdtipia
threads. Each thread executes on a separate core therebgsnc

Moinuddin K. Quresht

IBM Research
T. J. Watson Research Center, New York

mkquresh@us.ibm.com

Yale N. Patt

ECE Department
The University of Texas at Austin

patt@ece.utexas.edu

1. Introduction

It has become difficult to build large monolithic processbes
cause of excessive design complexity and high power require
ments. Consequently, industry [17] [19] [1] [31] has shift®

ing concurrency and improving performance. As the number of Chip-Multiprocessor (CMP) architectures that tile mukigimpler
cores on a CMP continues to increase, the performance of someprocessor cores on a single chip. Industry trends [1] [3djsthat

multi-threaded applications will benefit from the incredisaum-
ber of threads, whereas, the performance of other multathed
applications will become limited by data-synchronizatiand
off-chip bandwidth. For applications that get limited bytala
synchronization, increasing the number of threads sigmifig
degrades performance and increases on-chip power. Siynfiar
applications that get limited by off-chip bandwidth, inasing the
number of threads increases on-chip power without progidiny
performance improvement. Furthermore, whether an apjdica
gets limited by data-synchronization, or bandwidth, othnei de-

the number of cores will increase every process generation:-
ever, because of the power constraints, each core on a CMP is e
pected to become simpler and power-efficient, and will haweet
performance. Therefore, performance of single-threaqualica-
tions may not increase with every process generation. Ti@eixt
high performance from such architectures, the applicatioist be
divided into multiple entities callethreads. Such applications are
called multi-threaded applications. In multi-threadeglagtions,
threads operate on different portions of the same problertwh-
creases concurrency of execution. Multi-threaded apjdioa can

pends not only on the application but also on the input set and broadly be classified into two categories [10]. First, wheultin

the machine configuration. Therefore, controlling the nembf
threads based on the run-time behavior of the applicatiorsiga
nificantly improve performance and reduce power.

This paper propose$eedback-Driven Threading (FDT), a
framework to dynamically control the number of threads gsim-
time information. FDT can be used to implem&ghchronization-
Aware Threading (SAT), which predicts the optimal number of

threading is done for the ease of programming and the nuntber o
threads is fixed (for example, producer-consumer thre&isjond,
when multi-threading is done solely for performance (foample,
matrix multiply) and changing the number of threads doesmet
pact correctness. Unfortunately, the performance of nthigaded
applications does not always increase with the number eatls
because concurrently executing threads compete for shaatd

threads depending on the amount of data-synchronizatiam. O (data-synchronization) and shared resources (e.g. @ff-bbs).
evaluation shows that SAT can reduce both execution time and This paper analyzes techniques for choosing the best nuofber
power by up to 66% and 78% respectively. Similarly, FDT can be threads for the applications in the second category.

used to implemerBandwidth-Aware Threading (BAT), which pre-
dicts the minimum number of threads required to saturatethe

The number of threads for a given application can be set stat-
ically using profile information. However, we show that thesb

chip bus. Our evaluation shows that BAT reduces on-chip powe number of threads for a given application can change sigmifig
by up to 78%. When SAT and BAT are combined, the average with input set and machine configuration. With CMPs becoming
execution time reduces by 17% and power reduces by 59%. Thecommon, general purpose applications are being paradt®li@uch

proposed techniques leverage existing performance ceuated
require minimal support from the threading library.

Categories and Subject Descriptors C.0 [General]: System ar-
chitectures.

General Terms Design, Performance.
Keywords Multi-threaded, CMP, Synchronization, Bandwidth.

* The author was a PhD student at UT Austin during this work.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS'08, March 1-5, 2008, Seattle, Washington, USA.
Copyright(© 2008 ACM 978-1-59593-958-6/08/0003. . . $5.00

applications are expected to perform well across diffeiaptit
sets and on varied machine configurations. Current systetribes
number of threads to be equal to the number of available proce
sors [33][2][29], unless informed otherwise. This apptoaoplic-

itly assumes that increasing the number of threads alwagsoives
performance. However, when the performance of an appbicas
limited by the contention for shared data or bus bandwidddli-a
tional threads do not improve performance. In such caseseth
threads only waste on-chip power. Furthermore, we showtheat
increase in contention for shared data due to additionabtis can,

in fact, increase execution time. Therefore, once the sygets
limited by data-synchronization, further increasing thanier of
threads worsens both power and performance. Thus, for power
efficient and high-performance execution of multi-threcha@pli-
cations, it is important to choose the right number of theedtbw-
ever, whether an application gets limited by data-synadksadion,

or bandwidth, or neither is a function not only of the appiica
but also of the input set and the machine configuration. There

a mechanism that can control the number of threads at rue-tim
depending on the application behavior, can significantlprinae
performance and reduce power. This paper propdsedback-
Driven Threading (FDT), a framework that dynamically controls
the number of threads using run-time information. FDT sawpl
a small fraction of the parallelized kernels to estimateapplica-
tion behavior. Based on this information, it estimates theber of
threads at which the performance of the kernel saturates.iE2
general framework which can handle several performancidis
While it is desirable to have a scheme that can handle albperf
mance bottlenecks, designing such a scheme may be intiectab
Therefore, in this paper, we use the FDT framework to address
the two major performance limiters: data-synchronizatma bus
bandwidth. Possible future work can extend FDT to handlerth
performance limiters such as contention for on-chip caemelson-
chip interconnect.

Shared data in a multi-threaded application is kept syntbeal
using critical sections. The semantics of a critical section dictate
that only one thread can be executing it at any given time. Whe
each thread is required to execute the critical sectiontatatime
spent in the critical section increases linearly with thenber of
threads. The increase in time spent in the critical sectam aff-
set the performance benefit obtained from the additionaaithr
In such cases, further increasing the number of threadsemsrs
both power and performance. In Section 4, we propose antanaly
ical model to analyze the performance of a data-synchrtiniza
limited application. We use this model along with the FDThiex
work to implementSynchronization-Aware Threading (SAT). SAT
can estimate the optimal number of threads at run-time dépgn
on the time spent in critical sections. For multi-threadextkloads
that are limited by data-synchronization, SAT reduces leo#cu-
tion time and power by up to 66% and 81% respectively.

For data-parallel applications where there is negligib&tad
sharing, the major performance limiter tends to be the bipc
bandwidth. In such applications, demand for the off-chimdba
width increases linearly with the number of on-chip coresfdy-
tunately, off-chip bandwidth is not expected to increashasame
rate as the number of cores because it is limited by the nuwiber
1/0 pins [12]. Therefore, performance of data-parallellaaions
is likely to be limited by the off-chip bandwidth. Once thd-ohip
bandwidth saturates, additional threads do not contritouperfor-
mance while still consuming power. In Section 5, we propase a
analytical model to analyze the performance of bandwidttitéd
applications. We use this model along with the FDT framework
implementBandwidth-Aware Threading (BAT). BAT can estimate
the minimum number of threads required to saturate the laff-c
bus. Our evaluation shows that BAT reduces on-chip powergoy u
to 78% without increasing the execution time.

The two techniques, BAT and SAT, can be combined. Our eval-
uation with 12 multi-threaded applications shows that tbenlai-
nation reduces the average execution time by 17% and thegever
power by 59%. The proposed techniques leverage existirfgrper
mance counters and require minimal support from the threpdi
library.

2. Overview

Current systems set the number of threads equal to the nhumbe

of cores [33][2][29]. While some applications benefit frontaege
number of threads, others do not. The two major factors that |
the performance of such applications are data-synchrtoizand
off-chip bandwidth. This section describes these two Hitnitns
in detail. It also provides an overview of the proposed sotut
for high-performance and power-efficient execution undese
limitations.

2.1 Limitations Due to Data-Synchronization

For multi-threaded applications, programmers ensurerorgenf
accesses to shared data usinigical sections. A critical section is
implemented such that only one thread can execute it at agive
time. Therefore, all executions of a critical section getadized.
When all threads try to execute the critical section, thaltbine
spent in executing the critical sections increases ligeaith the
number of threads. Furthermore, as the number of threadsdse,
the fraction of execution time spent in the parallelizedtipor of
the code reduces. Thus, as the number of threads increagetdh
time spent in the critical sections increases and the tiote $pent
outside critical sections decreases. Consequentlycarisiections
begin to dominate the execution time and the overall execuiine
starts to increase.

GetPageHistogram(Page *P)

For each thread: {

/* Serial part of the function */
Critical Section:
Add local histogram to global histogram

/* Parallel part of the function */
UpdateLocalHistogram(Fraction of Page)

|

Barrier

}

Return global histogram

Figure 1. A function from PageMine that counts the occurrence
of each ASCII character on a page of text

Figure 1 shows a function frorRageMine® that counts the
number of times each ASCII character occurs on a page of text.
This function divides the work acrosB threads, each of which
gathers the histograms for its portion of the pag§eSize/T)
and adds it to the global histogram. Updates to the locabgiam
can execute in parallel without requiring data-synchration. On
the other hand, updates to the global histogram, which isaeesh
data-structure, are guarded by a critical section. Theeefme and
only one thread can update the global histogram at a givee. tim
As the number of threads increase, the fraction of executios
spent in gathering local histograms decreases becausdteaad
has to process a smaller fraction of the page. Whereas, theamu
of updates to the global histogram increases, which ineetise
total time spent in updating the global histogram.

Figure 2 shows the normalized execution timePageMine
as the number of threads are increased from 1 to 32 (Section 3
describes our experimental methodology). The executioe tie-
creases until 4 threads and increases substantially be§/thrdads
because the time spent in the critical section begins to dat@i
the overall execution time. Therefore, having more tharttsi@ads
worsens both performance and power. A mechanism that can con
trol the number of threads based on the fraction of time sipesrit-

Ijcal sections can improve both performance and power-effiy.

1The code forPageMine is derived from the data mining benchmark
rsearchk [26]. This kernel generates a histogram, which is used as a
signature to find a page similar to a query page. This kerndalied
iteratively until the distance between the signatures efghery page and

a page in the document is less than the threshold. In our iexpets, we
assume a page-size of 5280 characters (66 lines of 80 cheraeich) and
the histograms consists of 128 integers, one for each AS@liacter.

0 4 8121620242832
Number of threads

Figure 2. Execution time normalized with respect to one thread
for PageMine

2.2 Limitations Due to Off-Chip Bus Bandwidth

Data-synchronization does not affect all applications: &am-
ple, data-parallel applications where threads operateeparate
data require negligible data-synchronization. For sugiliegations,
contention for shared resources that do not scale with time-nu
ber of threads is more likely to limit performance. One sueh r
source is the off-chip bandwidth. For applications with ligigle
data sharing, the demand for off-chip bandwidth increaisestly
with the number of threads. However, the off-chip bandwidthot
expected to increase as the number of cores because ittsditny
the number of I/O pins [12]. Therefore, these applicatioasdme
off-chip bandwidth limited. Once the off-chip bus satusteo fur-
ther performance improvement can be achieved by increahing
number of threads. Thus, the performance of an off-chip buos |
ited system is governed solely by the bus bandwidth and ntidy
number of threads. However, having more threads than red)tir
saturate the bus only consume on-chip power without carttri
to performance.

EuclideanDistance(Point A)

[*Parallel threads compute partial sums*/
fori=1toN
sum = sum + A[i] * A[i]

Return sqgrt(sum)

Figure 3. A function which computes Euclidean Distan@d) of
a point from origin in an N-dimensional space

Figure 3 shows a function which computes the Euclidean Dis-
tance ED) of a point in an N dimensional space. The function con-
tains a data-parallel loop which can easily be distributebss
multiple threads with negligible data-synchronizatiors.the num-
ber of threads increase, more iterations are executed iallglar
which reduces the execution time until the off-chip bandbviati-
lization is 100%. Once the system is bandwidth limited, nohier
performance improvement is obtained.

Figure 4a shows the normalized execution timem{N=100M)
as the number of threads increase from 1 to 32. The execution
time reduces until 8 threads and then becomes constant.riith
tiple threads, the demand for off-chip bus increases ligekig-
ure 4b shows the bandwidth utilization of this loop as the bem
of threads increase from 1 to 32. Until 8 threads, the bantwit-
lization increases linearly and then stays at 100% for nimesids.
Therefore, having more than 8 threads does not reduce ésecut
time. However, more threads increase on-chip power consamp
which increases linearly with the number of threads. A tbneg
scheme that is sensitive to bandwidth consumption will dvgoich
extraneous threads that consume power without improvimfpipe
mance.

) —
v £ S s

E 1.2 , Vi i E/ 128 / {3@/@ AN Nl N
moy \ vl g 560

g 05 1) Vs 3 = 40

X IVig =

Y ooa \w*#‘g ' g 0. Nrsrssssonirnrn D 20

g 0.2 g O T T 7171 = O T T 7171

2 0 > 0 4 8121620242832 © 0 4 8121620242832

Number of threads Number of threads

(a) (b)

Figure 4. (a) Normalized execution time with respect to one thread
for ED. (b) Bandwidth utilization oED

2.3 Solution: Feedback-Driven Threading

For power-efficient and high-performance execution of mult
threaded workloads, we propoBeedback-Driven Threading (FDT).
Figure 5 shows an overview of the FDT framework. Unlike canve
tional threading, which statically divides the work intoxefil num-
ber of threads, FDT dynamically estimates the number ofatise
at which the performance saturates. FDT samples some portio
of the application to estimate the application behavior. &@m-
ple, if the system is likely to be bandwidth limited, FDT mes
bandwidth utilization during the training phase. After thrain-
ing, FDT decides the number of threads based on this infoomat
While FDT is a general framework, this paper uses it to addres
the two major performance limiters: data-synchronizatowl bus
bandwidth. For high performance and power-efficient exeoubf
workloads that are limited by data-synchronization, th& Flame-
work can be used to implemeS8gnchronization-Aware Threading
(Section 4). Similarly, for power-efficient execution ofrzhwidth-
limited workloads, the FDT framework can be used to implemen
Bandwidth-Aware Threading (Section 5). We present our experi-
mental methodology before we describe these two techniques

%

(a) Program to be executed
on a system with N cores

Eecaceee

(b) Conventional threading uses N threads

Train to sample
application behavior

1

Execute on
K threads
(K<=N)

Choose number of threads
based on train information

(c) Feedback-Driven Threading

Figure 5. Overview of Feedback-Driven Threading

3. Experimental Methodology
3.1 Configuration

For our experiments we use a cycle-accurate x86 simulatm- C
figuration of the simulated machine is shown in Table 1. We-sim
ulate a CMP system with 32 cores. Each core is two-wide issue,
in-order, with private L1 and L2 caches. The L3 cache is 8MB an
is shared among all cores. Memory is 200 cycles away andiosnta
32 banks. The off-chip bus is capable of servicing one caictee |
every 32 cycles at its peak bandwidth. For power measuresnent
we count the number of cores that are active in a given cyale an
the power is computed as the average of this value over the ent
execution time.

System 32-core CMP with shared L3 cache
In-order, 2-wide, 5-stage pipeline, 4-KB Gshare
Core 8KB write-through private | and D cache
64KB, 4-way associative, inclusive private L2 cachg
On-chip Bi-directional ring. Separate control and data ring
Interconnect| 64-byte wide, 1-cycle hop latency
Coherence | Distributed directory-based MESI
Shared 8MB, 8-way associative with 8 banks,
L3 cache 20-cycle, 64-byte cache lines, LRU replacement
Memory 4:1 cpu/bus ratio, 64-bit wide, split-transaction
Data Bus pipelined bus, 40 -cycle latency
Memory 32 DRAM banks, approx. 200 cycle bank access,
bank conflicts, open/close pages, row buffers modeled

Table 1. Configuration of the simulated machine

3.2 Workloads

We simulate 12 multi-threaded applications from differeta-
mains. The applications are divided into three categories.
The performance ofPageMine, ISort[3], GSearch[9], and
EP(psuedo-random number generator)[3] is limited by data-
synchronization. Whereas, the performanc&mfconvert(a unix
utility), Transpose[30], and MTwister(psuedo-random number
generator)[30] is limited by bus bandwidth. Performanc8Ti],
MG[3], BScholes[30], andSConv[30] is limited neither by data-
synchronization nor by off-chip bandwidth. Such applicas con-
tinue to benefit from more threads. We believe that such eppli
tions will drive the number of cores on future CMPs and hence
we simulate a 32-core CMP. All applications were paraledizis-

ing OpenMP [8] directives and compiled using the Intel C Com-
piler [14]. We execute all applications to completion. EaBlshows
the description and input-set for each application.

[Type [Workload | Problem description | Inputset |
PageMine Data mining kernel 1000 pages
CSs ISort Integer sort n = 64K
limited GSearch Search in directed graphs| 10K nodes
EP Linear Congruential PRNG 262K numbers
ED Euclidean distance n =100M
BW Convert Image processing 320x240 pixels
limited | Transpose 2D Matrix transpose 512x8192
MTwister Mersenne-Twister PRNG| CUDA [30]
BT Fluid Dynamics 12x12x12
Scalable MG Multi-grid solver 64x64x64
BScholes Black-Scholes Pricing CUDA [30]
SConv 2D Separable convolution 512x512

Table 2. Details of simulated workloads

4. Synchronization-Aware Threading

Critical sections serialize accesses to shared data in-thediaded
applications. As the number of threads increase, the iatalspent

in the critical section increases. Therefore, the margieduction

in the execution time caused by each additional thread nffssto
the marginal increase in execution time due to the critieatisn.
We explain this phenomenon with an example. Figure 6 shows th
execution of a program which spends 20% of its execution time
the critical section and the remaining 80% in the parallet.pehe
overall execution time with one thread is 10 units.

P=8

P=4 LEGEND
== Parallel Portion

p=2 === Critical Section
----- Waiting for

P=1 Critical Section

01234656 7 8 9 101112 13 14 15 16
time

Figure 6. Example for analyzing impact of critical sections

When the program is executed with two threads, the time taken
to execute the parallel part is reduced to four units whikettstal
time to execute the critical section increases from two to fmits.
Therefore, the total execution time reduces from 10 uniguaits.
However, overall execution time reduces with additionak#&us
only when the benefit from reduction in the parallel part isreno
than the increase in the critical section. For example giasing the
number of threads to four reduces the time for the paralletlfpam
four to two units but increases the time for the critical satfrom
four to eight units. Therefore, increasing the number oballs
from two to four increases the overall execution time fromngsi
to 10 units. Similarly, increasing the number of threads ighe
further increases the overall execution time to 17 units.

4.1 Analytical Model

We can analyze the impact of critical sections on overaltatien
time using an analytical model. L& s be the time spent in the
critical section and’'n,cs be the time to execute ttparallel part

of the program. Let(T'») be the time to execute the critical sections
and the parallel part of the program when thereRtareads. Then,
Tp can be computed as:

_ Tnocs

Tp +P-Tcs (1)
The number of thread&Pcs) required to minimize the execu-
tion time can be obtained by differentiating Equation 1 wébpect

to P and equating it to zero.

d TNocs
— Tp = — T 2
ap P pz +1cs 2
TNocs
Pos = 3
s =\ el ©

Equation 3 shows thgtPcs) increases only as treguare-root
of the ratio of time outside the critical section to the timside the
critical section. Therefore, even if the critical sectiensmall, the
system can become critical section limited with just a feredlals.
For example, if the critical section accounts for only 1% loé t

Training loop executes

’ a few iterations using one
LOOP
while(TRAIN) gopy | thread to measure Tcs and
(TRAINING) | Tnocs. It sets TRAIN to false
—_ .
when training completes
e Estimate P
CYl omoute | g T and T
2 Pcs g Ics and Inocs
Spawn Pcs threads to
(i>=N) execute
remaining
iterations
N Loor | .. LOOP
BODY BODY

Figure 7. Synchronization-Aware Threading

overall execution time, the system becomes critical sediited
with just 10 threads. Moreover, having more thdns threads, in-
creases both execution time as well as power consumptiareTh
fore, a mechanism that predick:s for such applications can im-
prove both performance and power-efficiency. To that endpree
pose Synchronization-Aware Threading (SAT). The next iBact
describes the implementation of SAT.

4.2

The value ofPc g can be computed ifcs andTnocs are known.
Using the FDT framework, SAT samples a small fraction of the
application kernel to estimatE-s andTwno.cs. We perform SAT
only on loop kernels that have been parallelized by the @rogr
mer?2 Figure 7 shows the implementation of the SAT mechanism
for a typical kernel. It consists of three parts: trainingtimation,
and execution.

Implementation of SAT

4.2.1 Training:

The training loop is generated using a method simildobp peel-
ing [18]. The compiler divides the loop into two parts. The first
part, which executes only a few iterations, is used for trgnTo
measurelcs, the compiler inserts instructions to read the cycle
countef at the entry and exit of the critical sectiofics is com-
puted at runtime by calculating the difference betweenweedy-
cle countsT'y.cs can be estimated if the total time to execute each
iteration is known. The execution time required for eachaitien
is also measured by reading the cycle counter at the begjramid
end of the loop and taking the differencEy,cs is computed by
subtractingl s from the total time for one iteration. In our experi-
ments, we perform loop-peeling and instrumentation of thiming
loop using a source transformation tool.

To simplify the mechanism, the training loop is always exedu
in single threaded mode. Training loop is terminated if thgor
of Tcs t0 Tnocs is stable (within 5%) for three consecutive

2For the applications in our studies, we identify these peliabéd kernels

with the help ofOpenMP directive parallel. However, SAT is not re-
stricted to applications parallelized witlbenMP directives and can easily
be extended to other threading primitives

3Instructions to read the on-chip cycle counter exist in nmestiern 1SAs.

iterations. Otherwise, the training continues for a maximof 1%
of the total iterations.

4.2.2 Estimation:

The estimation stage computé%-s using Equation 3 and the
values ofTcs and Tnocs measured during training. The value
of Pcs is rounded to the nearest integer. The number of threads is
chosen as the minimum dfcs and the number of cores available
on the chip.

4.2.3 Execution:

The remaining iterations of the loop are executed using #tie e
mated number of threads. This is performed in our experimest
ing the OpenMP clausenum.threads, which allows the number of
threads to be changed at runtime.

4.3 Results

Figure 8 shows the execution time with SAT for the four apgplic
tions that are limited by data-synchronizaticrageMine, ISort,
GSearch, andEP. We also show the normalized execution time for
the baseline system as the number of threads is varied from 1 t
32. For all cases, the execution time with SAT is within 1%t t
minimum execution time.

ForPageMine, execution time decreases until 4 threads and be-
gins to increase beyond 6 threads. The critical sectionwuoes
approximately 2.34% of the total execution time in eachaiten
of the loop. Therefore, SAT estimates the best number ohtlge
to be 6.53 (rounded to 7). Faisort, the execution time is min-
imized at 7 threads, which is successfully predicted by SHie
main kernel inGSearch has two separate critical sections. After a
particular node and its children have been searched, threatbve
these nodes from the queue of nodes that are still to be shrch
In addition, all nodes visited by the threads are marked ticbre-
dundant searches. Therefore, the fraction of time withendtitical
section varies across iterations. On average, 3.84% ofiiragent
in the critical section. SAT trains for 1% of the iterationsdacor-
rectly chooses 5 threads. FBP, having 4 threads minimizes the
execution time while SAT predicts 5 threads.

1.0 4) L 1.0 4 UTTSEeSSY
0.8 *\ o 0.8 A Y ELA
0.6 N 0.6 SAT
0.4 o - 0.4
0.2 -{ SAT 0.2
0 T 0 T T
0 4 8 12162024 28 32 0 4 8121620242832
(a)PageMine (b)ISort
1.0 Yo o T 1.0 4 B
0.8 4 SAT 0.8 «X o
0.6 0.6 AR __wr?™
0.4 0.4 - W
0.2 0.2 4 SAT
0 T T T T T T 1 0 T T T T T T 1

0 4 8121620242832
(d)EP

0 4 8 121620242832
(c)GSearch

Figure 8. Performance of SAT. Vertical axis shows the normalized
execution time and horizontal axis shows the number of ttgea

4.4 Adaptation of SAT to Application Behavior

The time spent inside and outside the critical section glpic
depends on the input set. Therefore, the number of threads th
minimize execution time also varies with the input set. FégQ
shows the number of threads that minimize execution time for
PageMine as the page-size is varied from 1KB to 25KB (default
page-size is 5.2KB). The best number of threads varies widith

the page-size. Therefore, a solution that chooses the besber

of threads statically for one page-size will not be optinwaldther
page sizes. As SAT is a run-time technique, it can adapt togds

in the application behavior.

Best Num. Threads
= =
ONEREOON

T
0

5 10 15 20 25
Page Size in KB

Figure 9. Best number of threads vs page-sizeHageMine

Figure 10 shows the normalized execution timeHageMine
for page sizes of 2.5KB and 10KB as the number of threads is
varied from 1 to 32. SAT correctly chooses the right number of
threads for both the page sizes.

£25

F20 -+ Page-size 2.5KB
[3) -~ Page-size 10KB
g1.5 m SA

Wio

Eos

o

Z 01T T T T 717

T
0 4 8 1216202428
Number of threads

Figure 10. Performance of SAT for 2.5KB and 10KB page-size

5. Bandwidth-Aware Threading

Data-synchronization does not affect all applications: &@am-
ple, data-parallel applications where threads operateeparate
data require negligible synchronization. For such apfitics, the
working set is typically huge and the demand for bandwidth in
creases linearly with the number of threads.

P=4 and P=8 takes
same time to execute
LEGEND
== Parallel Part
=== Bus Access
Waiting for Bus

P=8

p=2 +- - - -
P=1 IS S ISS| | S| ISS ISS| |

8 10 12 14 16 18 20 22 24 26 28 30 32
time
Figure 11. Example for analyzing bandwidth limited systems

6

Figure 11 demonstrates the bandwidth usage of a typical data
parallel application. When a single thread executes, ol 2f
execution time is spent transmitting data on the off-chig. Ainere-
fore, utilization of the off-chip bus is 25%. If the same lasgsplit
across two threads, the execution time reduces and the itina-ut
tion increases to 50%. Similarly, increasing the numbeihoéads
to four further reduces execution time while saturatinghibe. As
the bus is 100% utilized, the system becomes off-chip buidan
and further increasing the number of threads from four thilpes
not reduce the execution time.

5.1 Analytical Model

We analyze the impact of off-chip bus bandwidth on overall ex
ecution time using an analytical model. LB#/; be the percent
bus utilization with a single thread. When the working settaf
application is large, the bus utilization increases liheaith the
number of threads. In such cases, the bus utilizati®t’p) with P
threads can be computed as:

BUp = P- BU;)

When BUp becomes 100%, the system becomes off-chip band-
width limited. Therefore, the number of thread3s() required to
saturate the bus can be computed as:

100

Q)

Thus, if a single thread utilizes the off-chip bus for 10%la# time,
then the system will become off-chip bandwidth limited foona
than 10 threads. Once the number of threads is sufficientticeda
the bus, the performance of the system becomes a functionsof b
speed rather than the number of threadd Ifs the time to execute
theparallel part of the program with one thread, then the execution
time (T») with P threads is:

Ppw =

L P< Psw
Tr =19 N 7 (6)
{m P > Ppw.

Increasing the number of threads beyadfgly does not reduce
execution time, however, it does increase the on-chip poere-
fore, a mechanism that can estimd®gy for such applications
can reduce the on-chip power. To this end, we profResewidth-
Aware Threading (BAT). The next section describes the implemen-
tation of BAT.

5.2

The value ofPgw, can be computed iBU; is known. BAT uses the
FDT framework to estimate the value 8fU; and is implemented
similar to SAT, except for three differences:

Implementation of BAT

1. Training: The training loop has code to measure the aff-bbs
utilization. The number of cycles the off-chip bus is utizis
measured by reading a performance monitoring cofirtethe

interconnect, dram-bank causes the bandwidth utilizatioscale
slightly sub-linearly. Nevertheless, the execution til8AT with
7 threads is similar to that with 8.

The kernel inconvert computes one row of the output image
at a time and writes it to a buffer. Both reading and writing th
image consumes off-chip bandwidth. As bus utilization wéth
single thread is approximately 5.8%, BAT predicts 17 theeddhe
execution time with BAT is similar to the minimum executiome,

start and end of the loop. The difference in the two readings Which occurs with 18 threads.

denotes the number of cycles the off-chip bus is busy. Ttz tot
time to execute each iteration is measured similarly byiread
the cycle counter and taking the difference. Bus utilizati®
computed as the ratio of the bus busy cycles to the total sycle

2. Termination: Training terminates after at most 1% of thepl
iterations are executed. Additionally, after 10000 cyclethe
product of the average bus utilization times the number of

cores available on chip is less than 100%, BAT predicts that
the system can not become bandwidth limited and training

terminates.

3. Estimation: The estimation stage compuigsy using Equa-
tion 5 and the value oBU;. Pgw is rounded up to the next

The data-parallel kernel iliranspose computes the transpose
of a matrix. Each thread operates on a different column of the
matrix and bus utilization is high (12.2% with a single thdga
BAT predicts 8 threads which is similar to the minimum number
of threads that cause the bus utilization to reach 100%.

MTwister includes two data-parallel kernels. The first kernel
implements a Mersenne-Twister random number generatdr [24
The second kernel applies the Box-Muller transformatigrofithe
random numbers generated by the first kernel. The data setbe
fitin the L3 cache. The performance of the first kernel corgmto
scale until 32 threads. However, performance of the secenaek
saturates at 12 threads due to bandwidth limitation. Thestwo
kernels require different number of threads and statiaailyosing

integer because a higher number of threads may not hurt per-a fixed number of threads for the whole program cannot lead to
formance while a smaller number can. The number of threads minimum power. BAT correctly predicts the number of threéals

is chosen as the minimum dPgy, and the number of cores
available on the chip.

5.3 Results

Figure 12 shows the execution time with BAT for the four ap-
plications that are limited by off-chip bandwidtBD, convert,
Transpose, andMTwister. We also show the normalized execu-
tion time for the baseline system as the number of threadsried/
from 1 to 32. For all cases, the execution time with BAT is \vith
3% of the minimum execution time.

1o 1.0
0.8 4\ 0.8 «\
041! TR
4 '\ BAT 44N
0.2 H "YEALLLALLLLDNNN 024 > ,'\wa_g,/%éli,,v«,,«,,;
0 T T T T T T T T 0 T T T 1 T T T
0 4 8121620242832 0 4 8 121620242832
(@ED (b)convert
1o 1.0 |}
0.8 4\ 08 |
0% I\ Bar 01 1\
0.4 4 W[0.4 4 N\
0.2 4 TEAAAAAAAAANAAA 0.2 \‘—m-y.._EﬁT.V;F
0 T T T T T T T T 0 T T T T T T T T
0 4 8121620242832 0 4 8 121620242832

(c)Transpose (d)MTwister

Figure 12. Performance of BAT. Vertical axis denotes normalized
execution time and horizontal axis the number of threads.

The kernel irED incurs a miss every 225 cycles on average. The
bus utilization with a single thread is approximately 14.3%e ex-
ecution time is minimum with 8 threads, however, BAT presli¢t
threads. This occurs because BAT assumes that bandwititauti
tion increases linearly with the number of threads. Howetrex
contention for other shared resources like on-chip cacheship

4 Counters to track the number of cycles the off-chip bus iy mlieady ex-
ist in some of the current processors. For example Bti&2DRDY_CLOCKS
counter in the Intel Core2Duo [23] processor and BUS_DATA_CYCLE
counter in Intel Itanium2 [16] processor . If such a counteesinot cur-
rently exist in the system, then the performance monitofiagnework can
easily be extended to report this information.

be 32 for the first kernel and 12 for the second kernel, redutie
average number of threads to 21. Thus, BAT saves power withou
impacting the execution time.

The results show that BAT correctly estimates the minimum
number of threads required to saturate the off-chip banthwid
BAT can significantly reduce on-chip power for such applmas
because on-chip power consumed in cores is directly prigmart
to the number of active cores. Compared to the case whereras ma
threads are used as the number of on-chip cores, BAT redhees t
power consumed in the cores by 78% f, 47% for convert,
75% forTranspose, and 31% foMTwister. Additionally, as BAT
does not impact execution time significantly, the savingsawer
can be directly interpreted as savings in energy.

5.4 Adaptation of BAT to Machine Configuration

The minimum number of threads required to saturate the bus is
dependent on the system bus bandwidth. Figure 13 shows the no
malized execution time fotonvert as the number of threads is
varied from 1 to 32 for two systems: first with one-half the ¢an
width of the baseline machine and the second with doubleahd-b
width. For the first system, the execution time saturatesfateéds,
whereas, for the second system it continues to decreaseefdle

a solution that statically chooses the number of threadsimed;

to saturate the bus bandwidth of one system can, in fact,pgeurt
formance for another system. For example, using 8 thread$fi¢o
second system doubles its execution time. BAT computestthe n
ber of threads required to saturate the bus at runtime, fibrexat

is robust to changes in the machine configuration. For thesiyge
tems, BAT correctly predicts the number of threads as 8 and 32

g 10 ~ Lxbandwidth
E 08 =~ 2x bandwidth
§- 0.6 B BAT

w 0.4

E 0.2 ,

5 i S S A
z 0+ T T T T T T T T

0 4 8 12 16 20 24 28
Number of threads

32

Figure 13. Performance of BAT as off-chip bandwidth is varied

1.0 T T T -
g — : — ;
g 08 : :
S 06 : :
N =
'(—é 0.4 : = Execution tim :
g 0_24{.: : - |mm Power .
0- . | 2
@ o) : & @ ol o RS
& & < R QO & 2 ¢ & O e
N &P & <« o 00& &Qo «\é\é‘ AR &® c_)Czo Q‘@Q’
< © : g &
Synchronization-Limited : Bandwidth-Limited Scalable
Figure 14. Execution time and power of (SAT+BAT) normalized to 32 thiea
o 1.0 -I
3 08 B
- —{=2 (SAT+BAT) exec. time
2 06)
2 = mm Oracle exec. time
g 0.4 [~|mm (SAT+BAT) power
S 0.24§E - Oracle power
0- [- T
@ Q LR) Q
§(\ \%o(\ g & : S @O (\)QO\Q: Oo(\ Q)((\Q;’b‘
Q’bo) O@ . Q)@ 9
Synchronization-Limited : Bandwidth-Limited Scalable

Figure 15. Execution time and power for (SAT+BAT) and an oracle schehie values are normalized to 32 threads.

6. Combining SAT and BAT using FDT

SAT reduces execution time and power consumption for data-
synchronization limited workloads while BAT saves power fo
bandwidth-limited workloads. Both techniques can be comati
within the FDT framework. The best number of threads comgute
by BAT and SAT for a given application can be different. Inisuc
cases, we choose the minimum of the two values. It can be grove
that choosing the minimum of the two values minimizes overal
execution time. The proof is included in the Appendix.

6.1 Implementation

To combine SAT and BAT the values ¢f-s and Pgy are com-
puted at runtime using the FDT framework. The implementatio
remains the same as explained in Section 4.2 and Sectiors.2,
cept for three differences. First, the training loop measthe in-
puts required for both SAT and BAT. Second, the training Idops
not terminate until the training for both SAT and BAT is coreigl.
Third, the number of threadBr pr is computed using equation 7.

@)

Prpr = MIN(Ppw, Pcs,num_available_cores)

6.2 Results

Figure 14 shows the execution time and power with the combina
tion (SAT+BAT) normalized to the case of conventional thiieg
which spawns as many threads as available cores (32 in aly)stu
The applications are grouped depending on whether theyirare |
ited by data-synchronizatio®{geMine, ISort, GSearch, EP), or
bandwidth ED, convert, Transpose, MTwister), or neither BT,
MG, BScholes, SConv). The bar labelegmean shows the geomet-
ric mean measured over all the 12 applications.

As expected, (SAT+BAT) combines the performance and power
benefits of the two schemes. For all four data-synchrorndtim-

ited applications, significant reduction in both executiione and
power is achieved. For all four bandwidth limited applicat, a
significant power reduction is achieved. Famvert, increasing
the number of threads increases the L3 cache misses for éach o
the individual threads. Therefore, curtailing the numblethoeads

to 17 reduces both power as well as execution time. For the fou
applications limited neither by data-synchronization néfrchip
bandwidth, FDT retains the performance benefits of moreattse
by always choosing 32 threads. Therefore, it affects nettieex-
ecution time nor the power consumption. On average, (SATHBA
reduces the execution time by 17% and power by 59%.

6.3 Comparison with Best Static Policy

We also compare (SAT+BAT) to an oracle scheme that staficall
sets the number of threads using off-line information. Welen
mented the oracle scheme by simulating the applicationlfpoa-
sible number of threads and selecting the fewest numbereads
required to be within 1% of the minimum execution time. Figaib
shows the execution time and power for (SAT+BAT) and the ora-
cle scheme, normalized to the case when there are 32 thieads.
MTwister, (SAT+BAT) reduces power by 31% compared to the or-
acle schem&Twister contains two kernels. For the first kernel,
the best number of threads is 32 and for the second kerndbetbte
number of threads is 12. The oracle scheme chooses 32 tHorads
the whole program, whereas, (SAT+BAT) chooses 32 threads fo
the first kernel and 12 threads for the second kernel. Forth#ro
applications, the execution time and power with (SAT+BAS3im-

ilar to the oracle scheme. However, (SAT+BAT) has the achgat
that it does not require any prior information about the agapion
and is robust to changes in the input set (Section 4.4) andimac
configuration (Section 5.4).

7. Related Work

With multi-core architectures becoming mainstream, itgubas
started to focus on multi-threaded applications. Sevexasthave
been released in the recent past for improving the perfocmanh
such applications. For example, the Intel Vtune perforreaaic-
alyzer [15] enables the programmers to analyze and tunei-mult
threaded applications. Published guidelines [11] [13} #wom-
pany such tools encourage programmers to carefully chduse t
number of threads taking thread-spawning overhead anchsync
nization overhead into account. OpenMP [8], a popular pelral
programming paradigm, includes an optidBMP_DYNAMIC, which
allows the runtime library to dynamically adjust the numlodr
threads. The Sun OpenMP compiler [33] uses this option toices
the number of threads to the “number of physical CPUs on the ma
chine”. We are not aware of any OpenMP library in either indus
or academia that uses run-time information to dynamicadiytiol

the number of threads.

We discussed that increasing the number of threads may satu-

rate or worsen performance. Other researchers have madlarsim
observations. For example, Nieplosha et al. [28] studiedgtrfor-
mance of scientific workloads on Cray MTA-2 and Sun Niagara.
They show that some benchmarks get bandwidth limited on Nia-
gara with as few as 8 threads. Furthermore, they also showv tha
performance of some irregular scientific applications cecrelase

for more than 8 threads. Similar observations were made Iy Sa
et al. [32] for a different machine.

The studies in [20] describe a compile time technique thegta
communication overhead into account in order to improveatr
scheduling in SMP systems. Nguyen et al. [27] and Corbalan et
al. [6][7] investigate a system that measures the efficiendjffer-
ent allocations and adjusts the job allocation in SMPs. Hewehe
trade-offs in SMPs and CMPs are different. For example, riter-
processor communication delays are significantly more #e c
SMPs compared to CMPs. Similarly, the off-chip bandwidth in
creases with the number of processors in SMP but may not & cas
of CMPs. Furthermore, the training time overhead for [2][}[b
increases with the number of possible processor allocatidrich
causes the speedup to decrease as more processors arecdiged t
system. Whereas, our technigue requires only a singlanigalaop
to estimate the speedup for all possible number of threabishw
substantially reduces training overhead.

McCann et al. [25] propose a scheduling mechanism to maxi-
mize throughput when the information about speedup versos n
ber of cores for the competing application is known apribiow-
ever, such information is dependent on input set and madaiuine
figuration. Our work does not assume such apriori knowledge.
Brecht et al. [5] present a theoretical analysis to show tisatig
job characteristics in making scheduling decisions isulséfow-
ever, both [25] and [5] have fundamentally different ohijezthan
ours in that our aim is to improve the performance eaifrgle multi-
threaded application.

FDT samples the application at runtime to estimate apjdinat
behavior. Other researchers have also used temporal sariphi
power and performance optimizations in CMPs. For exampie, K
mar et al. sample a given single-threaded application derdifit
cores of a heterogeneous CMP [21][22]. However, they didehe
studies for multi-programmed workloads that were composied
different applications, had a predetermined number ofiaptibns
(threads), and had no data-sharing. The objective of odystito
improve power and performance of multi-threaded applicetifor
which the number of threads can be varied and can contaiffisign
cant amount of shared data. Furthermore, studies [21] a@faf2
restricted to heterogeneous CMPs and do not provide anympmwe
performance benefits for homogeneous CMPs (used in our)study

8. Conclusion

Multi-threading enables applications to achieve high gentince
on chip-multiprocessors. However, the number of threadst e
picked carefully to ensure high performance and low powethis
paper, we analyze the two major performance limiters of mult
threaded applications: data-synchronization and off-chand-
width. For applications that get limited by data-syncheation,
increasing the number of threads significantly increasesugion
time as well as power. Similarly, for applications that getited
by off-chip bandwidth, increasing the number of threadsaases
on-chip power without providing any performance improvemne
A mechanism that can control the number of threads basedeon th
application behavior can reduce both execution time andepolo
this end, we make the following contributions:

1. We proposeFeedback-Driven Threading (FDT), a dynamic
technique to control the number of threads at runtime based
on the application behavior.

We propose a simple analytical model that captures thadétmp
of data-synchronization on execution time. Based on thideho
and the FDT framework, we develdp/nchronization-Aware
Threading (SAT).

We propose a simple analytical model that estimates thé mi
mum number of threads required to saturate the bus. Based on
this model and the FDT framework, we develBandwidth-
Aware Threading (BAT).

4, We combine SAT and BAT within the FDT framework. Our
evaluation, with 12 multi-threaded applications, showat the
combination reduces the average execution time by 17% and
power by 59%.

2.

3.

The proposed techniques leverage existing performance-cou
ters and require minimal support from the threading librapre-
over, these techniques do not require any prior informagibaut
the application and are robust to variation in input set aadme
configuration.

9. Future Work

We assumed that only one thread executes per core assuming no
SMT on individual cores. However, the conclusions derivethis
paper are also applicable to CMP systems with SMT-enablezsco
Our model for bandwidth utilization assumes that bandwigth
quirement increases linearly with the number of threadsicivh
ignores cache contention and data-sharing. More compsaleen
models that take these effects into account can be develéped
non-iterative kernels, the compiler can generate a speethtrain-
ing loop for estimating application behavior. Althoughstiiaper
uses the FDT framework to implement only SAT and BAT, FDT is
a generalized framework which can be used to handle othésrper
mance limiters such as contention for on-chip interconnemthe,

or DRAM banks.

Acknowledgments

Thanks to Eric Sprangle and Anwar Rohillah for discussiomd a
insights on scalability of multi-threaded workloads. Aanjaleel
and Hyesoon Kim provided valuable feedback which improwed t
quality of this paper. We thank the anonymous reviewers agghm
bers of the HPS research group for their suggestions. Théareh
was supported by gifts from the Cockrell Foundation, Inseid
IBM. We also acknowledge the Texas Advanced Computing Cen-
ter for providing computing resources.

References

[1] Advanced Micro Devices, Inc. White Paper: Multi-CoreoBessors —
The next evolution in computing. 2005.

[2] D. an Mey et al. The RWTH Aachen SMP-Cluster User's Guide
Version 6.2, May 2007.

[3] D. Bailey et al. NAS parallel benchmarks. Technical nepbASA,
1994.

[4] G. E. P. Box and M. E. Muller. A note on the generation ofdam
normal deviatesAnnals of Mathematical Satistics, 1958.

[5] T. Brecht and K. Guha. Using parallel program charast&s in
dynamic processor allocation policiePerformance Evaluation,
27/28(4), 1996.

[6] J. Corbalan et al. Dynamic speedup calculation throwghanalysis.
Technical Report UPC-DAC-1999-43, UPC, 1999.

[7] J. Corbalan, X. Martorell, and J. Labarta. Performaddeen
processor allocation.EEE Trans. Parallel Distrib. Syst., 2005.

[8] L. Dagum and R. Menon. Openmp: An industry-standard api f
shared-memory programminéEEE Comput. Sci. Eng., 1998.

[9] A. J. Dorta et al. The openmp source code repositoryEdromicro
Conference on Parallel, Distributed and Network-Based Processing,
2005.

[10] R. Ennals. Efficient Software Transactional Memory. cHigical
Report IRC-TR-05-051, Intel Research Cambridge Tech Repan
2005.

[11] M. Gillespie and C. Breshears(Intel Corp.). Achievifigreading
Success. www.intel.com/cd/ids/developer/asmo-na2dra$06.htm,
2005.

[12] J. Huh et al. Exploring design space of future CMPSPACT '01.

[13] Intel. Developing multithreaded applications: A fiam consistent
approach. www.intel.com/cd/ids/developer/asmo-nad&3itp7.htm,
2003.

[14] Intel. ICC 9.1 for Linux. http://www.intel.com/cd/#ware/products/
asmo-na/eng/compilers/284264.htm.

[15] Intel. Threading methodology: Principles and pragsic www.intel.-
com/cd/ids/developer/asmona/eng/219349.htm, 2003.

[16] Intel. Intel Itanium 2 Processor Reference Manual ,£200

[17] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip
Dual-Core Multithreaded ProcessoEEE Micro, 24(2):40-47, 2004.

[18] K. Kennedy et al.Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers, 2002.

[19] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: 2-B/ay
Multithreaded SPARC ProcessdEEE Micro, 25(2):21-29, 2005.

[20] R. Kumar et al. Compiling several classes of commuiocapatterns
on a multithreaded architecture. IRDPS’ 02, 2002.

[21] R. Kumar et al. Single-ISA Heterogeneous Multi-Corelitectures:
The Potential for Processor Power ReductionMICRO 36, 2003.

[22] R. Kumar et al. Single-ISA Heterogeneous Multi-Corecliitectures
for Multithreaded Workload Performance. IBCA 31, 2004.

[23] D. Levinthal. Introduction to Performance Analysis loel CORE 2
Duo Processors. "http://assets.devx.com/goparall@7apdf’, 2006.

[24] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random ham
generatorACM Trans. Model. Comput. Smul., 1998.

[25] C. McCann et al. A dynamic processor allocation policy f
multiprogrammed shared-memory multiprocessofsans. Comp.
Sys., 1993.

[26] R. Narayanan et al. MineBench: A Benchmark Suite foreaDMtning
Workloads. InllSWC, 2006.

[27] T. D. Nguyen et al. Maximizing speedup through selfitignof
processor allocation. Imtn’l Parallel Processing Symposium, 1996.

[28] J. Nieplocha et al. Evaluating the potential of muliaded platforms
for irregular scientific computations. Bomputing frontiers, 2007.

[29] Y. Nishitani, K. Negishi, H. Ohta, and E. Nunohiro. Irepientation
and Evaluation of OpenMP for Hitachi SR8000.181PC 3, 2000.

[30] Nvidia. CUDA SDK Code Samples. http://developer.dévenl.-
nvidia.com/compute/cuda/sdk/website/samples.htn;720

[31] R. Ramanathan. Intel multi-core processors: Makirg itiove to
guad-core and beyondechnology@Intel Magazine, Dec 2006.

[32] S. Saini etal. A Scalability Study of Columbia using tHAS Parallel
Benchmarks.Journal of Comput. Methods in Sci. and Engr., 2006.

[33] R. van der Pas et al. OMPIab on Sun Systems. Presenttitre
International Workshop on OpenMP, 2005.

Appendix

When BAT and SAT are combined, the best number of threads for
SAT (Pcs) and BAT (Pgw) can be different. In such case, choos-
ing the minimum of the two values minimizes overall executio
time. This can be proved as follows:

There are two cases:

1. Pcs < Ppw. This case is shown in Figure 16. The execution
time decreases while the number of threddy is less than
Pcs and then it starts to increase. Whéhis greater than
Psw, the execution time spent outside the critical sections
becomes constant instead of reducing. Therefore, the lbvera
execution time increases linearly with the number of thsead
Thus, selecting’cs minimizes the overall execution time.

A

Normalized Execution Time

Pcs Pbw
Number of threads

Figure 16. Overall execution time wheRcs <Ppw

2. Pew < Pcs. This case is shown in Figure 17. The execution
time decreases whil® is less thanPzw . When P is greater
thanPgw , the execution time spent outside the critical sections
ceases to reduce, which means that the system becomesllimite
by critical sections sooner and effectivé-s shifts to Pgw .
Therefore, aftePsw, overall execution time increases linearly
with the number of threads. Thus, selectiRgw minimizes
the overall execution time.

w

E

'_

c

8

=

5

3]

Q

i .

S e

@ - e

N iz

© RN s’

e | ~<._7

_ -1

o ! |

z ! I -
Pbw Pcs

Number of threads

Figure 17. Overall execution time wheRgw < Pcs

