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Abstract 
Chip Multiprocessors are becoming common as the cost 

of increasing chip power begins to limit single core 
performance.  The most power efficient CMP consists of 
low power in-order cores. However, performance on such a 
processor is low unless the workload is nearly completely 
parallelized, which depending on the workload can be 
impossible or require significant programmer effort. 

This paper argues that the programmer effort required 
to parallelize an application can be reduced if the 
underlying architecture promises faster execution of the 
serial portion of an application. In such a case, 
programmers can parallelize only the easier-to-parallelize 
portions of the application and rely on the hardware to run 
the serial portion faster. 

We make a case for an architecture which contains one 
high performance out-of-order processor and multiple low 
performance in-order processors. We call it an Asymmetric 
Chip Multiprocessor (ACMP). Although the out-of-order 
core in the ACMP makes it less power efficient, it enables 
the ACMP to produce higher performance gains with less 
programmer effort. 

1. Introduction: The Power Limited Era 
CPU architecture is currently transitioning from an area 

limited to power limited era due to silicon processing 
trends.  Every silicon process generation shrinks linear 
dimensions by 30%, which has the following implications 
[22]: 

1. Twice the transistors fit in the same die area 
2. Capacitance of each transistor shrinks ~30% 
3. Voltage decreases ~10% 
4. Switching time of a transistor decreases ~30% 

 
Power = CV2F, so every process step the power scales 

by relative # of transistors * capacitance per transistor * 
relative V2 * relative frequency, which is 2 * 0.7 * 0.92 * 
1/.7 = 1.6x power per silicon process generation.  We can 
argue that voltage drops by slightly more that 10% per 
generation or capacitance drops by slightly more than 30%, 
but the conclusion that power is increasing by about 1.6x 
every two years is a solid conclusion.  To make matters 
worse, power supply and dissipation cost increases non-
linearly with power to the point that 300 watts is the 
highest economically practical design point for a chip. 

After studying power consumption in traditional out-of-
order processors, it quickly becomes clear that the 
hardware and associated power involved with uncovering 

parallelism must be addressed.  There are many techniques 
for “explicitly” exposing the parallelism in the code stream 
so the hardware is not in charge of uncovering it.  These 
techniques include very long vectors, threading, VLIW, etc, 
and each of these techniques has strengths and weaknesses 
depending on the type of workloads that are intended to be 
run.  In particular, threading is a useful technique for 
tolerating cache misses, and many of the applications that 
we believe will be important in the future, like graphics 
rendering, media processing, etc, have poor caching 
behavior.   Therefore we believe that threading is an 
appropriate technique for explicitly exposing parallelism.  
In addition to threading, we believe that wider SIMD could 
be another important technique for exposing parallelism, 
but we do not explore that technique in this paper. 

Industry is currently taking the first steps towards 
adapting to the power constrained era.  IPC scales roughly 
as the square-root of chip area [20], and power scales linear 
with chip area.  Rather than further increasing IPC, recent 
designs like the Core2Duo, tile multiple traditional 
processors on a chip, trading some amount of single thread 
performance for multi-thread performance.  Some designs, 
like Niagara, are even more radical, removing out-of-order 
hardware altogether and trading even more single thread 
performance for more multi-thread performance. 

2. Architecting for Threaded Workloads 
One might point out that in an area limited era, 

traditional cores have attempted to maximize perf/mm2, 
implying the core is implicitly somewhat optimized for 
performance/Watt), and therefore ask “why would a core 
optimized for threaded workloads have a different 
architecture?”  The reason is that traditional, single-thread 
optimized, cores, targeted for general purpose applications, 
have added features that give more than 1% performance 
for 3% power (1:3).  1:3 is the breakeven point for voltage 
scaling – if you decrease the voltage by 1%, you decrease 
frequency by 1%, and therefore since P = CV2F, power 
decreases by 3% (P = CV2F, F =V, P = CV3 derivative of 
V3 = 3V2).  Therefore any idea that improves performance 
by less than 1:3 is worse than simply increasing voltage, 
and should be rejected.  In reality, traditional cores only 
consider ideas that provide better performance per power 
than 1:3, since they need to justify the engineering effort 
and guard against the inevitable power growth and 
performance degradation as ideas go from concept to 
reality. 

For a multi-thread optimized architecture, the breakeven 
point is much more aggressive – 1% performance for only 
1% power (not 3% power).  This is because when 
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optimizing for performance on applications that can be 
threaded with explicit parallelism, we can double 
performance by doubling the number of cores, which to a 
first order only doubles the power.  So any feature that 
costs more than 1% power for 1% performance should be 
discarded. 

 

Figure 1: CMP Architectures 

 

 

Table 1: Baseline CMP configurations. 
 

 
Table 2: Configuration of cores.  Approximate IPCs 
come from simulation on our workloads. Relative sizes 
are estimated by comparing P6 to P5 with growth 
factors to comprehend the addition of threading and 
64 bit virtual addressing.  Relative power is estimated 
as the product of frequency and size.  Relative 
performance/power is normalized to a single P6-like 
core. 

2.1. The “Tiled P6” Approach 
As mentioned in Section 1, the first step towards 

targeting multi-threaded workloads is replicating 
traditional, single-thread optimized cores, for example 
Core2Duo, Core2Quad, AMD Opteron, and IBM Power 5 

[6].  For this paper, we will call this the “Tiled P6” 
approach. The “Tiled P6” approach has 2 main benefits: 

1. It achieves competitive performance on traditional, 
single-threaded workloads since each of the processors 
is well optimized for single threaded performance. 

2. The approach requires lower design effort since the 
design is based on existing traditional cores. 

2.2. The “Niagara” Approach 
As the workload target focuses more heavily on 

threaded workloads, it becomes attractive to tile a core that 
removes the out-of-order hardware and instead exploits the 
threads for parallelism.  Niagara is a good example of this 
type of architecture. In a Niagara core, 4 separate threads 
are picked round-robin to be issued down a relatively 
shallow, 5 stage in-order pipeline.  If a thread stalls for any 
reason (for example cache miss or divide operation), the 
front end picker picks from the non-stalled threads in a 
round-robin fashion.   

Rather than extracting parallelism using hardware 
techniques like out-of-order execution, Niagara core 
architecture relies on threads to create explicit parallelism.  
Removing out-of-order hardware and still achieving high 
IPC can yield substantial power efficiency improvements 
(~ 2.5x), but only if the thread level parallelism exists.  
This efficiency improvement comes at the expense of 
substantially lower single thread performance (on average 
our simulations show about 1/3rd the performance), so 
even a short serial bottleneck can dramatically increase 
overall execution time (Amdahl’s law). 

2.3. Asymmetric Chip Multiprocessors 
Performance of an application on a given CMP 

architecture is dependent on its degree of parallelization. If 
we assume a single Niagara core is 1/4th the area while 
achieving 2/3rds the performance when running 4 threads, 
then the tiled Niagara approach can achieve higher 
performance vs. the tiled P6 approach on applications that 
are 100% parallelized.  On the other extreme, if the 
application is not at all parallelized, the out-of-order 
hardware of the P6 core will help the core run the 
application about three times as fast. 

The asymmetric chip multiprocessor (ACMP) attempts 
to give the best of both worlds by tiling a single P6-like 
core and many Niagara cores on the same chip and having 
all the cores run the same ISA.  The ACMP can run the 
parallel portion of the application on the Niagara cores 
while running the serial portion on the faster P6.  With an 
ACMP, the overall performance is somewhat less 
dependent on the percentage of parallel code.  On the other 
hand, if a workload or application is completely 
parallelized, it gives up some performance because single 
P6-like core is getting 3/8th the throughput of the 4 Niagara 
cores that it replaces.  In this way, an ACMP can help 
increase software efficiency at the expense of hardware 
efficiency because an ACMP can run the harder or 
impossible to parallelize parts of the code on the faster P6-
like cores.   

CMP  Tiled-P6 
approach 

Niagara 
approach 

ACMP 

P6-like 
cores 

4 0 1 

Niagara-
like cores 

0 16 12 

Core  Single  
P6-like Core 

Single  
Niagara Core 

Frequency 3 GHz 3 GHz 
Issue-width 4 2 

SMT none 4 thread, aggressive 
round robin 

Approximate 
IPC 

2.2 1.4 (four threads) 
0.7 (single thread) 

Relative Size 1 0.25 
Relative 
Power  

(Size * Freq) 

1 0.25 

Approximate 
Relative 

Perf / Power 

1 2.5 (four threads) 
1.3 (single thread) 
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Note that an ACMP architecture can consist of more 
than 2 types of processors, with each processor type 
optimized for a different class of workloads.  For this 
paper, we focus on a combination of in-order cores and out-
of-order cores as we believe these cores offer the most 
significant tradeoff between power/performance and 
parallelism type [10]. 

2.4. What is power in the context of an ACMP? 
When optimizing for performance/power, it’s worth 

discussing exactly what we mean by power with respect to 
an ACMP. Will both types of cores run at the same time, or 
will only one type of core run at a time?  If only one type of 
core will ever run, clock gating circuits can engage so the 
resulting power is the maximum of the power consumed by 
each core type, rather than the sum of the power. 

It is hard to predict how applications will evolve to 
exploit the performance of an ACMP.  Perhaps the closest 
existing analogy to an ACMP system is a PC with a CPU 
and a GPU, where the CPU is optimized more for single 
threaded performance and the GPU is optimized for the 
highly parallel workload of graphics rendering.  In this 
system, most performance critical workloads, like advanced 
3D games keep both the CPU and GPU fully utilized.  We 
believe that if asymmetric chip multiprocessors become 
common, many applications will successfully utilize the 
entire compute resources and therefore the “power” should 
be measured as the sum of both the P6 core and the Niagara 
cores.  In our simulations, both the P6 cores and the 
Niagara cores are used when running parallel phases of the 
application. 

3. Background and Related Work 
  Asymmetric chip multiprocessors have been proposed 

and evaluated by several researchers. We discuss some of 
the contributions that are most relevant to our work.  

Morad et al [2] propose an asymmetric processor that 
consists of one powerful core and an array of small cores. 
Their conclusions are similar to our conclusions presented 
in Figure 2 which describes performance vs. degree of 
parallelization, however they evaluated the performance of 
the processor on only one workload with a fixed degree of 
parallelism (0.75). Our paper shows the relation between 
speedup on an asymmetric processor and the degree of 
parallelism, which is a function of programmer effort.  

Grochowski et al. also study a CMP configuration with 
one large core and an array of small cores [4][5], focused 
on optimizing the energy consumed per instruction.  

Kumar et al. [7-11] focused on improving power and 
throughput of multi-programmed workloads. Their 
proposed architecture includes a combination of mediocre 
and powerful cores, targeting multiple, single-threaded 
applications running at the same time. While we believe 
multi-programmed workloads are important, especially in 
server environments, we focus on improving the 
performance of applications running in isolation, a usage 
model more relevant to desktop PC environments. 

In [19], Ipek et al. show how a reconfigurable processor 
architecture can provide better performance on applications 
at intermediate stages during a parallelization effort. 
Balakrishnan et al. have also studied the performance and 
scalability of commercial workloads on asymmetric chip 
multiprocessors [1]. Similarly work has been done to 
improve scheduling of threads on asymmetric chip 
multiprocessors [18]. 

4. Contributions of this Paper 
A key insight of this paper is that an ACMP trades off 

some amount of theoretical peak throughput for reduced 
programmer effort and that the percentage reduction in 
peak throughput decreases as the transistor budget 
increases. 

Most previous CMP studies have focused on multi-
programmed workloads.  Our studies focus on existing 
applications which we parallelized and simulated on our 
CMP configurations, accurately modeling the thread 
management overheads, cache interactions between the 
threads running in parallel as well as the thread 
synchronization latencies.   

This paper also attempts to understand some of the 
challenges associated with parallelizing applications, and 
shows how the effort associated with these challenges 
influences the performance of the various CMP 
architectures studied. 

5. Degree of Parallelism 
We define the “degree of parallelism” as the percentage 

of dynamic instructions in parallel regions of code.  For 
simplicity, we will assume that parallel regions of code are 
infinitely parallel, while non-parallel regions have exactly 
zero parallelism.  In reality, software is rarely so biased.  
Parallel regions of code are never infinitely parallel, and 
synchronization overheads, thread spawning overheads etc. 
can reduce or eliminate the speedup potential from parallel 
threads. 

This simple parallel/not parallel view of the world is 
useful in explaining tradeoffs between the ACMP, the 
Niagara approach and the tiled-P6 approach.  Using our 
performance rules of thumb from Figure 1, we plot the 
speedup of ACMP, Tiled-P6 and Niagara over a single P6 
type core, versus the applications degree of parallelism.   

When the degree of parallelism is low or non-existent, 
the overall performance equals the performance of one of 
the cores in the CMP.  Both the ACMP and tiled-P6 
architectures achieve about 3 times the performance of the 
Niagara architecture because they both include single 
thread optimized cores running at the same frequency of 
Niagara core, and we assume the P6 cores achieve three 
times the IPC of the Niagara core when the Niagara core 
has only one active thread. 

At some point, there is enough parallelism that the 
throughput advantage of the Niagara approach offsets the 
single threaded performance disadvantage.  For the 
configuration of 16 Niagara cores vs. 4 P6 cores, when the 
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degree of parallelism exceeds 92%, the Niagara approach 
outperforms the tiled-P6 approach.  When the degree of 
parallelism exceeds 96%, the Niagara approach 
outperforms the ACMP approach. 
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Figure 2: Performance vs. Degree of Parallelism at a 
fixed peak power for different CMP architectures  

5.1. Performance of ACMP vs. alternative 
As previously discussed, ACMP outperforms Niagara 

until the code has been 96% parallelized as shown in Figure 
2 for our baseline configuration.  However, the cross-over 
point shifts to higher and higher degrees of parallelization 
as the silicon process improves and we are able to put more 
and more processors on chip as shown in Figure 3.   
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Figure 3: Degree of parallelism needed in application 
for Niagara approach to outperform ACMP approach 
vs. die area (expressed in units of “Niagara-like 
cores”).  Since transistor count doubles every process 
generation or 2 years, each doubling of Niagara cores 
is takes roughly 2 years. 

One process step after our baseline configuration of 16 
Niagara cores vs. 12 Niagara + a single P6 cores, we 
double transistors and have 32 Niagara cores vs. 28 Niagara 
cores + a single P6 core.  The peak throughput reduction of 
replacing 4 Niagara cores with a single P6 core is now 
amortized by an additional 28 Niagara cores, further 
increasing the degree of parallelism needed for the Niagara 
approach to outperform the ACMP approach. 

6. Parallelizing Applications 
Since the optimal CMP architecture is dependent on the 

degree of parallelism, we would like to better understand 
the challenges in parallelizing real applications. 

6.1. Experiment Methodology 
For our experiments, we studied 3 CMP configurations 

as described in Table 1 made up of the 2 basic cores 
described in Table 2.  Each core has its own 8-way, 32kB 
L1 instruction and 2 cycle, 8-way, 32kB L1 data cache 
backed up by a unified 10 cycle, 8-way, 256kB L2 cache.  
All caches have 64B lines and the L2 cache is inclusive of 
the L1 caches.  Our P6-style core includes fairly aggressive 
structures, including a 128-entry out-of-order window, 
16kB GShare branch predictor and perfect memory 
disambiguation.   

In all configurations, L2 cache misses cause a miss 
transaction to enter an on-die, bi-directional ring 
interconnect.  Each ring has both a 64B wide data bus and 
an address bus. To support coherency, miss transactions 
first go to a tag directory that has a copy of all the tags in 
all the L2 caches.  If a different cores’ L2 cache has the 
line, a request is sent to that core to forward the line to the 
requesting core, otherwise the line is read from DRAM.  
For all configurations, we simulated 40 GB/sec of DRAM 
bandwidth with 70ns latency.  

Our benchmarks were parallelized using OpenMP, and 
compiled to x86 using the Intel C Compiler.  OpenMP 
allows the programmer to parallelize serial code by 
inserting pragma compiler directives, or assertions about 
parallelism, around loops and code blocks. The most 
common usage scenario for OpenMP is one in which loops 
that are known to be parallelizable are marked by the user 
through such pragma directives. OpenMP makes no effort 
to validate the programmer’s assumptions, rather relying on 
programmer knowledge about the structure and access 
patterns in their code.  

The OpenMP implementation regards the marked 
regions of parallelism as quanta of parallel work to be 
scheduled at run-time.  For example, a loop of 1000 
iterations that is marked as parallel implicitly creates 1000 
quanta of work.  These quanta can be treated as individual 
threads or, in practice, as work units that worker threads 
will execute. This latter model is commonly referred to as   
a work-queuing model of parallelism. 

Practically, the work quanta are likely to be created at 
some coarser granularity than a single loop iteration 
because of the overheads of parallelism. For example, if a 
workload is relatively balanced across the work quanta, the 
run-time system is motivated to minimize total parallelism 
overhead by creating the minimal number of threads 
required to keep the cores busy. Typically, this number will 
be equivalent to the hardware core or thread count.  
Relatively imbalanced or unpredictable execution times per 
loop iteration will motivate the creation of more (smaller) 
work quanta to allow for addition quanta to schedule onto 
threads that complete their work earlier than others. 
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The overhead of thread creation is a key motivator for 
work-queue models.  Thread creation is a relatively 
expensive undertaking, requiring thousands of cycles to 
allocate stack, thread local storage, and runtime scheduling 
artifacts. Moreover, groupings of work quanta created in 
OpenMP is of a transient nature and must be synchronized 
upon completion. This synchronization can also be quite 
expensive. 

A common beginner’s mistake is to overwhelm the 
benefits of parallelism through promiscuous thread creation 
for small-ish units of work.  In the work queuing mode, 
worker threads, resources for work quanta, and associated 
work queues are created once at the beginning of program 
execution. Then, at each OpenMP pragma for parallelism, 
work quanta are added to the work queues.  In our 
experiments, we use a scalable runtime thread management 
library called McRT [21] to create work queues, worker 
threads, and work quanta for OpenMP. 

All cores support a user-level MWAIT instruction.  This 
instruction causes a thread to enter a sleep state until a 
specified memory location is accessed by a store 
instruction.  The Niagara pickers will not pick a thread in 
sleep state.  The McRT can use this instruction to stop 
thread waiting on a lock from actively spinning and 
consuming core execution slots, allowing the other threads 
to more fully utilize the pipeline. 

6.2. Quantifying Parallelization Effort 
As discussed in Section 5, the ACMP approach 

outperforms the Niagara approach at lower parallelization 
levels (less than about 0.96 for our baseline comparison of 
16 Niagara cores vs. 12 Niagara cores plus a single P6 
core).  As hardware architects, we have discussed with 
software engineers what we believe to be trends in 
computer architecture, in particular the trends towards 
CMPs.  Invariably the conversations drift towards the 
complexity of threading applications and the increasing 
effort required to achieve greater levels of parallelizability.  
This increasing effort is intuitive if one assumes that the 
software engineer will parallelize the hot kernels of an 
application first, and therefore the first parallelization 
efforts will have the biggest effects as shown in Figure 4. 

We were interested in exploring some of the challenges 
associated with threading workloads with the hope of 
gaining insights into how to address the challenge through 
software architecture, hardware architecture, or some 
combination of both. 

Quantifying the effort required for parallelizing 
applications is difficult because it is strongly dependent on 
many factors: 

1. The applications inherent parallelization, structure 
and complexity. 

2. The level of programmer experience, especially 
with parallelizing applications. 

3. The programmers’ understanding of the underlying 
hardware. 

4. The programmers’ familiarity with the application 
being parallelized. 

5. The data set being run on the application. 
6. The debugging, compiler and performance tuning 

tools available to the programmer. 
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Figure 4: Abstract representation of degree of 
parallelism vs. programmer effort. 

Recognizing the numerous difficulties associated with 
quantifying parallelization effort, it’s important to focus on 
the general trends and understand a couple of concrete 
examples rather than focus on the exact effort estimates.  A 
perfect study would lock maybe 100 professional software 
engineers in their rooms and have them parallelize maybe 
100 different applications, recording both the parallelism 
and overall achieved performance versus time.  As an 
approximation of this perfect experiment, we locked one 
graduate student in a room and had him parallelize 3 
applications. 

6.3. General Parallelization Effort Trends 
Programmers generally follow a regular workflow when 

parallelizing applications. This entire workflow is often 
iteratively applied, working from hot regions of program 
execution to colder regions. 

1. Comprehend: The programmer comprehends the 
application’s control and data flow. For the domain 
expert, this is straightforward, though it is often the 
case that the domain expert is not responsible for 
parallelizing the applications. 

2. Analyze: The programmer defines the regions of 
parallelism in the code by identifying where there 
are data- and control-independent regions of code. 
Commonly, these are loop bodies with no loop-
carried data dependencies. 

3. Parallelize: The programmer inserts OpenMP 
pragma compiler directives to identify this 
parallelism and measured performance. 

As the application is tuned, the parallelization process 
becomes much more invasive with respect to modifying the 
original source. Moreover, at each stage, parallelism-
related bugs, called data-races, may be introduced, which 
are often difficult to debug because of their non-
deterministic nature. 

Generally speaking, different classes of application 
require varying degrees of iteration through this workflow 
and the tuning loop. For example, a simple loop which 
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performs embarrassingly parallel work over a very large 
array will likely require little tuning work.  Alternatively, a 
loop with early exit conditions, such as a while loop, or 
loop-carried dependences, such as a reduction of values 
generated in each iteration, will require more tuning effort.  
We believe that the typical profile for parallelization effort 
is characterized by diminishing steps in performance 
scaling over time as colder regions of code are considered, 
the period and slope of each optimization phase determined 
by the tuning effort and programmer expertise. The general 
shape is illustrated in Figure 4. 

7. Case Study:  ART 
We parallelized the SPEC2000FP application ART, 

which implements a neural network used to recognize 
objects in a thermal image. The neural network is first 
trained on the objects, and after training is complete, the 
learned images are found in the scanfield image. A window 
corresponding to the size of the learned objects is scanned 
across the scanfield image and serves as input for the neural 
network. The neural network attempts to match the 
windowed image with one of the images it has learned.  

After profiling ART we found that the largest single 
consumer of instructions is the train_match function.  
train_match is called within a while loop which 
iterates until the neural network “converges” or recognizes 
the image to the best of the algorithms’ ability. 

while(!converge) 
 train_match(); 

The while loop is not good candidate for 
parallelization since we don’t know the number of 
iterations the loop will be executed. However, the 
train_match function itself is a much more promising 
candidate for parallelization because it consists of multiple 
for loops of stable and homogeneous trip count (10k 
iterations each for our particular input set). 

train_match: 
 loop 1 (10k iterations) 
 sqrt(sum of loop 1 results) 
 loop 2 (10k iterations) 
 sqrt(sum of loop 2 results) 
 loop 3 (10k iterations) 
 sqrt(sum of loop 2 results) 
 . 
 . 
 . 

We first used OpenMP pragma directives to cause the 
loop to be executed as a set of parallel threads.  This 
change did not produce speedup on our simulated CMP 
systems as shown in Figure 5 (the dip in performance after 
the first change).  We measured the number of instructions 
executed in both the original and threaded versions of the 
application and found that the threaded code was executing 
1.6x more instructions.  This implied that the quantums of 
work executed by each thread was small relative to the 
thread creation and synchronization code.  In other words, 
there was not enough work within each loop to offset the 
costs of spawning and synchronizing the individual threads.  

 This problem was addressed by fusing the loops and 
adding barrier operations where each loop would have 
needed to synchronize, as shown below: 

train_match: 
 for-loop (10k iterations) 
  work from loop 1 
  openMP thread barrier 
  sqrt(sum of loop 1 results) 
  work from loop 2 
  openMP thread barrier 
  sqrt(sum of loop 2 results) 
  work from loop 3 
  openMP thread barrier 
  sqrt(sum of loop 1 results) 
  .  
  . 
  . 

The OpenMP barrier directives cause all the threads to 
stop at the barrier until all the threads have reached the 
barrier.  After the barrier, one of the threads generates the 
square-root of the sum of the results generated by the 
parallel threads and all the threads are able to perform the 
work from the next loop in parallel.  Note that on the 
ACMP, serial code is scheduled to run on the faster P6 
core. 
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Figure 5: Simulated speedup of parallelized ART 
benchmark vs. programmer effort. 

To fix this issue, the programmer had to understand both 
the implementation mechanisms underlying the OpenMP 
runtime and relative overheads of work-quanta creation and 
barrier synchronization. The first overhead includes thread 
allocation costs and work-queue scheduling algorithms that 
entail multiple threads contending for the work queue.  The 
barrier synchronization, on the other hand, is a relatively 
well structured synchronization construct with predictable 
performance characteristics, especially when the work is 
relatively balanced between the threads, as it is in this case. 

Given this new understanding, we decided to create 
larger parallel work quantums by parallelizing the outer 
loop rather than the inner loop. Again we encountered the 
serializing memory allocation problem where malloc is 
called within the work quantum we wish to parallelize, 
shown in bold below. 
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for(y=0; y < pic->rows; y++){ 
 q = malloc(pic->cols); 
 for(x=0; x < pic->cols; x++) { 
  *q = interpolate (x, sinemap….) 
  q++; 
 } 
 output[y] = q; 
} 

This problem was fixed by moving the malloc out of 
the loop and allocating space for every iteration, shown in 
bold below.  Note that this optimization increases the 
amount of virtual memory consumed by the application. 

q2 = malloc(pic->rows * pic->cols) 
for(y=0; y < pic->rows; y++){ 
 q = q2[y*pic->cols]; 
 for(x=0; x < pic->cols; x++){ 
  *q = interpolate (x, sinemap….) 
  q++; 
 } 
 output[y] = q; 
} 

Our simulated performance results are shown in Figure 
6.  Eventually this application was parallelized to a point 
that both the ACMP and Niagara approach achieved nearly 
5x speedup vs. the single P6-type core.  

0

1

2

3

4

5

6

Programmer Time

Sp
ee

du
p 

vs
. 1

 P
6-

ty
pe

 C
or

e ACMP
Niagara
P6-Tile

 

Figure 6: Simulated speedup of Image 
Processing application vs. programmer effort. 
 

8. Case Study: Image Processing  
Our next application is based on the command line 

image processing utility “Convert” from ImageMagick. 
The application reads an image file, performs the specified 
transformation on the image, and stores it to as specified 
output file.  

We parallelized one of the image transformations, called 
“wave”, which shifts each column of pixels up or down by 
some amount defined by a sine wave.  The amplitude and 
frequency of the sine wave are specified by the user on the 
command line.  The program can be split into 4 steps.  

1. Reading the image from the file 
2. Compute the sine wave at each column position 

3. Perform the wave transformation on the image 
4. Write the transformed image to a file 

We profiled the code and found that most of the 
instructions were spent performing the wave transformation 
(step 3). This transformation is a loop over the rows of the 
image and within each row you loop over the columns of 
the image to transform each pixel, as show below. 

for(x=0; x < pic->cols; x++) { 
 *q = interpolate(x, sinemap….) 
 *q++; 
} 

Because of the pointer arithmetic, multiple instances of 
the loop cannot be run in parallel.  The loop needs to first 
be converted to using arrays, as shown below: 

for(x=0; x < pic->cols; x++)  
 q[x] = interpolate(x, sinemap….) 

After parallelizing this loop we found that the parallel code 
is functionally correct but that performance degraded on 
our simulated CMP models, as shown in Figure 6. 

After analysis, we found that there was a call to  
malloc inside the interpolate function (actually it 
was two levels deep, in the function 
AcquireImagePixel). The default McRT 
implementation of malloc has a global lock because it is 
calling the OS to acquire memory, and this global lock was 
serializing the otherwise parallel threads.  The code was 
always allocating and freeing exactly the same amount of 
space and therefore it was possible to statically allocate the 
space, eliminating the malloc call.  Since 
AcquireImagePixel is called in several other 
functions in the application, it is possible that other callers 
of the function actually require the malloc functionality 
to run correctly.  To solve this problem, we created a 
duplicate copy of the function, AcquireImagePixel2, 
which did not use malloc, and therefore did not constrain 
the parallelism.  Note that while there are parallel aware 
malloc packages, these incur particular overheads and do 
not address the key issue for the average programmer:  
Parallelizing an application requires comprehending 
whether any library dependences are 1) thread-safe and 2) 
scalable. 

We continued to see performance degradation after 
performing this optimization. Similar to ART, we 
compared the instructions executed in the serial and parallel 
versions and realized there wasn’t enough parallel work to 
amortize the thread creation and deletion overhead.  With 
better understanding of McRT thread management 
overhead, or with use of software tools such as Thread 
Profiler, it may have been possible to realize that work we 
were parallelizing was too small before actually going 
through the effort of parallelizing code.  However, this 
imposes additional burden to the programmer to learn these 
tools and understand the subtleties of threading runtime 
design. 
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9. Case Study: H264 Video Decoder 
The H264 decoder reads an H264 compressed video 

stream and decodes it into video. The H264 standard 
promises very high compression ratio while preserving 
image quality. The standard divides a video picture, or 
frame, into groups of sequential rows called slices. These 
slices are further split into 16x16 pixel squares, or 
macroblocks. Each slice is read from the stream in order, 
decoded, and displayed or written out to a file. The H264 
decoder performs the four major tasks: 

1. Read the data for each slice 
2. Decode each slice  
3. Apply a low-pass smoothing filter 
4. Write the data in the decoded picture buffer 

After familiarizing ourselves with the basic video 
encoding standard, we profiled on a test input stream and 
found that most of the time was spent in the function 
decode_one_frame.  At a coarse level, there are 3 
nested loops within the decode process 

for each frame in stream  
 decode__frame: for each slice 
  decode_slice: for each macroblock 
   decode one macroblock 

Given our understanding of the standard, we knew that 
there were dependencies between macroblocks in a slice, 
and between frames in a stream, but that slices can be 
processed in parallel.  Researchers in the past [3] have 
observed that there is little benefit in decoding slices in 
parallel.  Their observation was based on   100x100 pixel 
streams which do not have many slices per frame.  Small 
video streams have few slices per frame because each slice 
includes a constant amount of header information, and 
therefore well compressed streams will have large slices. 
The high definition (HD) 1280x720 pixel streams that we 
focused on contain an order of magnitude more slices per 
frame.  In this case, the data input set had strong influence 
over how to best parallelize the application, as well as the 
resulting level of parallelism achieved. 

Before parallelizing the loop, the code needed a 
significant amount of cleanup to remove global variables 
which were being used to hold values needed within the 
processing of one slice, created false dependencies.  

We analyzed the loop responsible for processing a slice 
and built the dependency graph shown in Figure 7 (Serial). 
For each slice, there is a serial dependency between the 
small header block followed by processing of the slice 
followed by small tail block.  The header block for the 
following slice is dependent on the tail block of the 
previous slice. 

After some analysis, we realized it was possible to make 
the tail code dependent only on the head code as shown by 
the dotted line in Figure 7 (Restructured). After removing 
this dependency it was possible to use the OpenMP taskq 
constructs (described in [15]) to reformulate the execution 
behave like Figure 7 (Parallelized). When a taskq 
pragma is encountered in the code, a work queue is 
created and worker threads are dispatched that then wait for 

work to be added to the work queue. The main thread 
continues to execute the loop and when a task pragma 
is encountered in the code, work specified within the task is 
added to the work queue. The key to the success of the 
strategy is that the body code is orders of magnitude longer 
than the sum of head and tail blocks. 

 

 

Figure 7: H.264 decode dependency graph 

H264 at 33,000 lines is a much larger application than 
the image processing application at 3000 lines, which 
explains the long investigation phase (programmer time 
needed before the first optimization was implemented) as 
shown in Figure 8.  Notice that after the initial 
parallelization efforts, the ACMP outperformed the Niagara 
approach by about 2.2x and after the final efforts, the 
Niagara core outperformed the ACMP core by 7%.   
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Figure 8: Simulated speedup of H.264 decoder 
vs. programmer effort. 
 

10. Balancing Effort and Performance  
All other software layers (including programming 

languages, libraries, and tools) being equal, it takes more 
programmer effort to exploit the more parallel 
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architectures. The Niagara-like cores are the primary 
beneficiary of this increased performance.  As observed in 
our simple programming experiments, the performance of 
the Niagara-like cores is lower than both the ACMP and 
P6-like cores when starting out in the parallelization 
process.  Similarly, the performance of the Niagara-like 
cores eventually gains the most from additional tuning 
effort. 

ACMP strikes a balance between these two architectural 
approaches, equaling the performance of P6-like cores for 
relatively little effort while returning nearly Niagara 
performance on highly parallelized workloads. While this 
approach potentially sacrifices performance at both 
extremes of programmer effort, it may be necessary until 
software parallelization languages and tools evolve to 
better support multi-core architecture. 

Software technologies will significantly reduce the 
effort to parallelize code thoroughly.  Unfortunately, such 
software technologies have been limited to relatively niche 
application spaces, such as those in High Performance 
Computing applications. It is unlikely that existing tools 
will proliferate widely as multi-core architectures scale for 
several reasons: 

1. The HPC tools focus on languages (e.g. Fortran) that 
are not likely widely used in mainstream application 
development, where C++, C#, and Java are more 
widely used.  For example, the use of OpenMP today 
effectively limits development options today to C and 
Fortran. 

2. Mainstream software development makes extensive 
use of libraries and middleware that will slowly be 
revised to meet the needs of parallel application 
development. This includes rewriting these libraries 
for thread-safety, and scalability. The malloc library 
in the ImageMagick application is a good example of 
this.  Earlier observations that malloc did not scale 
well, has led researchers to develop scalable malloc 
packages. 

3. Runtimes and models for HPC are focused less on 
client applications (like H.264 encode and decode).  
This is manifested in less optimal runtimes for finer-
grained parallelism (preferring to optimize for very 
coarse-grained thread throughput), resulting in higher 
threading and scheduling overheads. 

In our experiences, programmer productivity is 
paramount for mainstream software developers. Without 
solving the issues above, software vendors will be slow to 
optimize their applications. Developing and proliferating 
mainstream tools will likely take ~10 years, using a well 
known rule-of-thumb. 

From a purely software productivity-performance 
tradeoff point of view, these observations imply that 
ACMP architectures will be favored to manage the risks of 
committing to the “pure” approaches of the P6-like and 
Niagara-like architectures.  Silicon process scaling trends 
favor the ACMP approach because even when (and if) 
effective programming tools are available ~10 years from 
now, including P6-like cores in an otherwise Niagara-like 
computing fabric is likely to be of negligible cost. 
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Figure 9: Measured of degree of parallelism vs. 
programmer effort 

There are other factors that drive the decision to expend 
effort and may drive a preference for ACMP architectures.  
For applications based on relatively stable standards, like 
H.264, it is more reasonable to expect that the software 
developer will invest more time to optimize code.  This will 
be well rewarded given our experiences in optimizing 
H.264 (see Figure 9). On the other hand, applications that 
evolve rapidly because of competitive pressure or 
applications that are likely to be highly specialized may not 
be worth spending significant effort in optimization.  In 
such cases, it may be worth expending less effort (or none) 
to parallelize the application.  The return on effort for Art 
and ImageMagick for example, do not justify aggressive 
optimization, especially if these are highly specialized (Art) 
or likely to be part a competitive software ecosystem 
(ImageMagick). An ACMP architecture that returns 
reasonable performance for both levels of effort is 
attractive to minimize the overall performance risk for the 
buyer. 

11. Conclusion / Future Work 
We have demonstrated that an ACMP outperforms 

Niagara unless the program is more then 95% parallelized.  
Therefore, unless we are able to apply the software effort 
required to achieve this high level of parallelism, ACMP 
outperforms the Niagara approach. Process scaling will 
further motivate ACMP vs. the Niagara approach, since the 
throughput opportunity cost of replacing 4 Niagara cores 
with a single P6 cores is amortized across more Niagara 
cores. 

We believe there are hardware and software 
opportunities to reduce the parallelization effort and 
dramatically improve overall performance.  Computer 
architecture trends imply that research in this area will be 
tremendously important in the future. 
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