
Asymmetric Chip Multiprocessors: Balancing Hardware Efficiency and
Programmer Efficiency

M. Aater Suleman†, Yale N. Patt†
Eric Sprangle‡, Anwar Rohillah‡, Anwar Ghuloum‡, Doug Carmean‡

†High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin

‡Intel Corporation

TR-HPS-2007-001
February, 2007

This page is intentionally left blank

2

Asymmetric Chip Multiprocessors: Balancing Hardware
Efficiency and Programmer Efficiency

M. Aater Suleman, Yale Patt, University of Texas at Austin

Eric Sprangle, Anwar Rohillah, Anwar Ghuloum, Doug Carmean, Intel Corporation

Abstract
Chip Multiprocessors are becoming common as the cost

of increasing chip power begins to limit single core
performance. The most power efficient CMP consists of
low power in-order cores. However, performance on such a
processor is low unless the workload is nearly completely
parallelized, which depending on the workload can be
impossible or require significant programmer effort.

This paper argues that the programmer effort required
to parallelize an application can be reduced if the
underlying architecture promises faster execution of the
serial portion of an application. In such a case,
programmers can parallelize only the easier-to-parallelize
portions of the application and rely on the hardware to run
the serial portion faster.

We make a case for an architecture which contains one
high performance out-of-order processor and multiple low
performance in-order processors. We call it an Asymmetric
Chip Multiprocessor (ACMP). Although the out-of-order
core in the ACMP makes it less power efficient, it enables
the ACMP to produce higher performance gains with less
programmer effort.

1. Introduction: The Power Limited Era
CPU architecture is currently transitioning from an area

limited to power limited era due to silicon processing
trends. Every silicon process generation shrinks linear
dimensions by 30%, which has the following implications
[22]:

1. Twice the transistors fit in the same die area
2. Capacitance of each transistor shrinks ~30%
3. Voltage decreases ~10%
4. Switching time of a transistor decreases ~30%

Power = CV2F, so every process step the power scales

by relative # of transistors * capacitance per transistor *
relative V2 * relative frequency, which is 2 * 0.7 * 0.92 *
1/.7 = 1.6x power per silicon process generation. We can
argue that voltage drops by slightly more that 10% per
generation or capacitance drops by slightly more than 30%,
but the conclusion that power is increasing by about 1.6x
every two years is a solid conclusion. To make matters
worse, power supply and dissipation cost increases non-
linearly with power to the point that 300 watts is the
highest economically practical design point for a chip.

After studying power consumption in traditional out-of-
order processors, it quickly becomes clear that the
hardware and associated power involved with uncovering

parallelism must be addressed. There are many techniques
for “explicitly” exposing the parallelism in the code stream
so the hardware is not in charge of uncovering it. These
techniques include very long vectors, threading, VLIW, etc,
and each of these techniques has strengths and weaknesses
depending on the type of workloads that are intended to be
run. In particular, threading is a useful technique for
tolerating cache misses, and many of the applications that
we believe will be important in the future, like graphics
rendering, media processing, etc, have poor caching
behavior. Therefore we believe that threading is an
appropriate technique for explicitly exposing parallelism.
In addition to threading, we believe that wider SIMD could
be another important technique for exposing parallelism,
but we do not explore that technique in this paper.

Industry is currently taking the first steps towards
adapting to the power constrained era. IPC scales roughly
as the square-root of chip area [20], and power scales linear
with chip area. Rather than further increasing IPC, recent
designs like the Core2Duo, tile multiple traditional
processors on a chip, trading some amount of single thread
performance for multi-thread performance. Some designs,
like Niagara, are even more radical, removing out-of-order
hardware altogether and trading even more single thread
performance for more multi-thread performance.

2. Architecting for Threaded Workloads
One might point out that in an area limited era,

traditional cores have attempted to maximize perf/mm2,
implying the core is implicitly somewhat optimized for
performance/Watt), and therefore ask “why would a core
optimized for threaded workloads have a different
architecture?” The reason is that traditional, single-thread
optimized, cores, targeted for general purpose applications,
have added features that give more than 1% performance
for 3% power (1:3). 1:3 is the breakeven point for voltage
scaling – if you decrease the voltage by 1%, you decrease
frequency by 1%, and therefore since P = CV2F, power
decreases by 3% (P = CV2F, F =V, P = CV3 derivative of
V3 = 3V2). Therefore any idea that improves performance
by less than 1:3 is worse than simply increasing voltage,
and should be rejected. In reality, traditional cores only
consider ideas that provide better performance per power
than 1:3, since they need to justify the engineering effort
and guard against the inevitable power growth and
performance degradation as ideas go from concept to
reality.

For a multi-thread optimized architecture, the breakeven
point is much more aggressive – 1% performance for only
1% power (not 3% power). This is because when

1

optimizing for performance on applications that can be
threaded with explicit parallelism, we can double
performance by doubling the number of cores, which to a
first order only doubles the power. So any feature that
costs more than 1% power for 1% performance should be
discarded.

Figure 1: CMP Architectures

Table 1: Baseline CMP configurations.

Table 2: Configuration of cores. Approximate IPCs
come from simulation on our workloads. Relative sizes
are estimated by comparing P6 to P5 with growth
factors to comprehend the addition of threading and
64 bit virtual addressing. Relative power is estimated
as the product of frequency and size. Relative
performance/power is normalized to a single P6-like
core.

2.1. The “Tiled P6” Approach
As mentioned in Section 1, the first step towards

targeting multi-threaded workloads is replicating
traditional, single-thread optimized cores, for example
Core2Duo, Core2Quad, AMD Opteron, and IBM Power 5

[6]. For this paper, we will call this the “Tiled P6”
approach. The “Tiled P6” approach has 2 main benefits:

1. It achieves competitive performance on traditional,
single-threaded workloads since each of the processors
is well optimized for single threaded performance.

2. The approach requires lower design effort since the
design is based on existing traditional cores.

2.2. The “Niagara” Approach
As the workload target focuses more heavily on

threaded workloads, it becomes attractive to tile a core that
removes the out-of-order hardware and instead exploits the
threads for parallelism. Niagara is a good example of this
type of architecture. In a Niagara core, 4 separate threads
are picked round-robin to be issued down a relatively
shallow, 5 stage in-order pipeline. If a thread stalls for any
reason (for example cache miss or divide operation), the
front end picker picks from the non-stalled threads in a
round-robin fashion.

Rather than extracting parallelism using hardware
techniques like out-of-order execution, Niagara core
architecture relies on threads to create explicit parallelism.
Removing out-of-order hardware and still achieving high
IPC can yield substantial power efficiency improvements
(~ 2.5x), but only if the thread level parallelism exists.
This efficiency improvement comes at the expense of
substantially lower single thread performance (on average
our simulations show about 1/3rd the performance), so
even a short serial bottleneck can dramatically increase
overall execution time (Amdahl’s law).

2.3. Asymmetric Chip Multiprocessors
Performance of an application on a given CMP

architecture is dependent on its degree of parallelization. If
we assume a single Niagara core is 1/4th the area while
achieving 2/3rds the performance when running 4 threads,
then the tiled Niagara approach can achieve higher
performance vs. the tiled P6 approach on applications that
are 100% parallelized. On the other extreme, if the
application is not at all parallelized, the out-of-order
hardware of the P6 core will help the core run the
application about three times as fast.

The asymmetric chip multiprocessor (ACMP) attempts
to give the best of both worlds by tiling a single P6-like
core and many Niagara cores on the same chip and having
all the cores run the same ISA. The ACMP can run the
parallel portion of the application on the Niagara cores
while running the serial portion on the faster P6. With an
ACMP, the overall performance is somewhat less
dependent on the percentage of parallel code. On the other
hand, if a workload or application is completely
parallelized, it gives up some performance because single
P6-like core is getting 3/8th the throughput of the 4 Niagara
cores that it replaces. In this way, an ACMP can help
increase software efficiency at the expense of hardware
efficiency because an ACMP can run the harder or
impossible to parallelize parts of the code on the faster P6-
like cores.

CMP Tiled-P6
approach

Niagara
approach

ACMP

P6-like
cores

4 0 1

Niagara-
like cores

0 16 12

Core Single
P6-like Core

Single
Niagara Core

Frequency 3 GHz 3 GHz
Issue-width 4 2

SMT none 4 thread, aggressive
round robin

Approximate
IPC

2.2 1.4 (four threads)
0.7 (single thread)

Relative Size 1 0.25
Relative
Power

(Size * Freq)

1 0.25

Approximate
Relative

Perf / Power

1 2.5 (four threads)
1.3 (single thread)

2

Note that an ACMP architecture can consist of more
than 2 types of processors, with each processor type
optimized for a different class of workloads. For this
paper, we focus on a combination of in-order cores and out-
of-order cores as we believe these cores offer the most
significant tradeoff between power/performance and
parallelism type [10].

2.4. What is power in the context of an ACMP?
When optimizing for performance/power, it’s worth

discussing exactly what we mean by power with respect to
an ACMP. Will both types of cores run at the same time, or
will only one type of core run at a time? If only one type of
core will ever run, clock gating circuits can engage so the
resulting power is the maximum of the power consumed by
each core type, rather than the sum of the power.

It is hard to predict how applications will evolve to
exploit the performance of an ACMP. Perhaps the closest
existing analogy to an ACMP system is a PC with a CPU
and a GPU, where the CPU is optimized more for single
threaded performance and the GPU is optimized for the
highly parallel workload of graphics rendering. In this
system, most performance critical workloads, like advanced
3D games keep both the CPU and GPU fully utilized. We
believe that if asymmetric chip multiprocessors become
common, many applications will successfully utilize the
entire compute resources and therefore the “power” should
be measured as the sum of both the P6 core and the Niagara
cores. In our simulations, both the P6 cores and the
Niagara cores are used when running parallel phases of the
application.

3. Background and Related Work
 Asymmetric chip multiprocessors have been proposed

and evaluated by several researchers. We discuss some of
the contributions that are most relevant to our work.

Morad et al [2] propose an asymmetric processor that
consists of one powerful core and an array of small cores.
Their conclusions are similar to our conclusions presented
in Figure 2 which describes performance vs. degree of
parallelization, however they evaluated the performance of
the processor on only one workload with a fixed degree of
parallelism (0.75). Our paper shows the relation between
speedup on an asymmetric processor and the degree of
parallelism, which is a function of programmer effort.

Grochowski et al. also study a CMP configuration with
one large core and an array of small cores [4][5], focused
on optimizing the energy consumed per instruction.

Kumar et al. [7-11] focused on improving power and
throughput of multi-programmed workloads. Their
proposed architecture includes a combination of mediocre
and powerful cores, targeting multiple, single-threaded
applications running at the same time. While we believe
multi-programmed workloads are important, especially in
server environments, we focus on improving the
performance of applications running in isolation, a usage
model more relevant to desktop PC environments.

In [19], Ipek et al. show how a reconfigurable processor
architecture can provide better performance on applications
at intermediate stages during a parallelization effort.
Balakrishnan et al. have also studied the performance and
scalability of commercial workloads on asymmetric chip
multiprocessors [1]. Similarly work has been done to
improve scheduling of threads on asymmetric chip
multiprocessors [18].

4. Contributions of this Paper
A key insight of this paper is that an ACMP trades off

some amount of theoretical peak throughput for reduced
programmer effort and that the percentage reduction in
peak throughput decreases as the transistor budget
increases.

Most previous CMP studies have focused on multi-
programmed workloads. Our studies focus on existing
applications which we parallelized and simulated on our
CMP configurations, accurately modeling the thread
management overheads, cache interactions between the
threads running in parallel as well as the thread
synchronization latencies.

This paper also attempts to understand some of the
challenges associated with parallelizing applications, and
shows how the effort associated with these challenges
influences the performance of the various CMP
architectures studied.

5. Degree of Parallelism
We define the “degree of parallelism” as the percentage

of dynamic instructions in parallel regions of code. For
simplicity, we will assume that parallel regions of code are
infinitely parallel, while non-parallel regions have exactly
zero parallelism. In reality, software is rarely so biased.
Parallel regions of code are never infinitely parallel, and
synchronization overheads, thread spawning overheads etc.
can reduce or eliminate the speedup potential from parallel
threads.

This simple parallel/not parallel view of the world is
useful in explaining tradeoffs between the ACMP, the
Niagara approach and the tiled-P6 approach. Using our
performance rules of thumb from Figure 1, we plot the
speedup of ACMP, Tiled-P6 and Niagara over a single P6
type core, versus the applications degree of parallelism.

When the degree of parallelism is low or non-existent,
the overall performance equals the performance of one of
the cores in the CMP. Both the ACMP and tiled-P6
architectures achieve about 3 times the performance of the
Niagara architecture because they both include single
thread optimized cores running at the same frequency of
Niagara core, and we assume the P6 cores achieve three
times the IPC of the Niagara core when the Niagara core
has only one active thread.

At some point, there is enough parallelism that the
throughput advantage of the Niagara approach offsets the
single threaded performance disadvantage. For the
configuration of 16 Niagara cores vs. 4 P6 cores, when the

3

degree of parallelism exceeds 92%, the Niagara approach
outperforms the tiled-P6 approach. When the degree of
parallelism exceeds 96%, the Niagara approach
outperforms the ACMP approach.

0
2
4
6
8

10
12
14
16
18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

Sp
ee

du
p

vs
. 1

 P
6-

ty
pe

 C
or

e

ACMP
Niagara
P6-Tile

Figure 2: Performance vs. Degree of Parallelism at a
fixed peak power for different CMP architectures

5.1. Performance of ACMP vs. alternative
As previously discussed, ACMP outperforms Niagara

until the code has been 96% parallelized as shown in Figure
2 for our baseline configuration. However, the cross-over
point shifts to higher and higher degrees of parallelization
as the silicon process improves and we are able to put more
and more processors on chip as shown in Figure 3.

0.95

0.96

0.97

0.98

0.99

1.00

16 32 64 128 256
Number of Niagara-like Cores

D
eg

re
e

of
 P

ar
al

le
lis

m

Figure 3: Degree of parallelism needed in application
for Niagara approach to outperform ACMP approach
vs. die area (expressed in units of “Niagara-like
cores”). Since transistor count doubles every process
generation or 2 years, each doubling of Niagara cores
is takes roughly 2 years.

One process step after our baseline configuration of 16
Niagara cores vs. 12 Niagara + a single P6 cores, we
double transistors and have 32 Niagara cores vs. 28 Niagara
cores + a single P6 core. The peak throughput reduction of
replacing 4 Niagara cores with a single P6 core is now
amortized by an additional 28 Niagara cores, further
increasing the degree of parallelism needed for the Niagara
approach to outperform the ACMP approach.

6. Parallelizing Applications
Since the optimal CMP architecture is dependent on the

degree of parallelism, we would like to better understand
the challenges in parallelizing real applications.

6.1. Experiment Methodology
For our experiments, we studied 3 CMP configurations

as described in Table 1 made up of the 2 basic cores
described in Table 2. Each core has its own 8-way, 32kB
L1 instruction and 2 cycle, 8-way, 32kB L1 data cache
backed up by a unified 10 cycle, 8-way, 256kB L2 cache.
All caches have 64B lines and the L2 cache is inclusive of
the L1 caches. Our P6-style core includes fairly aggressive
structures, including a 128-entry out-of-order window,
16kB GShare branch predictor and perfect memory
disambiguation.

In all configurations, L2 cache misses cause a miss
transaction to enter an on-die, bi-directional ring
interconnect. Each ring has both a 64B wide data bus and
an address bus. To support coherency, miss transactions
first go to a tag directory that has a copy of all the tags in
all the L2 caches. If a different cores’ L2 cache has the
line, a request is sent to that core to forward the line to the
requesting core, otherwise the line is read from DRAM.
For all configurations, we simulated 40 GB/sec of DRAM
bandwidth with 70ns latency.

Our benchmarks were parallelized using OpenMP, and
compiled to x86 using the Intel C Compiler. OpenMP
allows the programmer to parallelize serial code by
inserting pragma compiler directives, or assertions about
parallelism, around loops and code blocks. The most
common usage scenario for OpenMP is one in which loops
that are known to be parallelizable are marked by the user
through such pragma directives. OpenMP makes no effort
to validate the programmer’s assumptions, rather relying on
programmer knowledge about the structure and access
patterns in their code.

The OpenMP implementation regards the marked
regions of parallelism as quanta of parallel work to be
scheduled at run-time. For example, a loop of 1000
iterations that is marked as parallel implicitly creates 1000
quanta of work. These quanta can be treated as individual
threads or, in practice, as work units that worker threads
will execute. This latter model is commonly referred to as
a work-queuing model of parallelism.

Practically, the work quanta are likely to be created at
some coarser granularity than a single loop iteration
because of the overheads of parallelism. For example, if a
workload is relatively balanced across the work quanta, the
run-time system is motivated to minimize total parallelism
overhead by creating the minimal number of threads
required to keep the cores busy. Typically, this number will
be equivalent to the hardware core or thread count.
Relatively imbalanced or unpredictable execution times per
loop iteration will motivate the creation of more (smaller)
work quanta to allow for addition quanta to schedule onto
threads that complete their work earlier than others.

4

The overhead of thread creation is a key motivator for
work-queue models. Thread creation is a relatively
expensive undertaking, requiring thousands of cycles to
allocate stack, thread local storage, and runtime scheduling
artifacts. Moreover, groupings of work quanta created in
OpenMP is of a transient nature and must be synchronized
upon completion. This synchronization can also be quite
expensive.

A common beginner’s mistake is to overwhelm the
benefits of parallelism through promiscuous thread creation
for small-ish units of work. In the work queuing mode,
worker threads, resources for work quanta, and associated
work queues are created once at the beginning of program
execution. Then, at each OpenMP pragma for parallelism,
work quanta are added to the work queues. In our
experiments, we use a scalable runtime thread management
library called McRT [21] to create work queues, worker
threads, and work quanta for OpenMP.

All cores support a user-level MWAIT instruction. This
instruction causes a thread to enter a sleep state until a
specified memory location is accessed by a store
instruction. The Niagara pickers will not pick a thread in
sleep state. The McRT can use this instruction to stop
thread waiting on a lock from actively spinning and
consuming core execution slots, allowing the other threads
to more fully utilize the pipeline.

6.2. Quantifying Parallelization Effort
As discussed in Section 5, the ACMP approach

outperforms the Niagara approach at lower parallelization
levels (less than about 0.96 for our baseline comparison of
16 Niagara cores vs. 12 Niagara cores plus a single P6
core). As hardware architects, we have discussed with
software engineers what we believe to be trends in
computer architecture, in particular the trends towards
CMPs. Invariably the conversations drift towards the
complexity of threading applications and the increasing
effort required to achieve greater levels of parallelizability.
This increasing effort is intuitive if one assumes that the
software engineer will parallelize the hot kernels of an
application first, and therefore the first parallelization
efforts will have the biggest effects as shown in Figure 4.

We were interested in exploring some of the challenges
associated with threading workloads with the hope of
gaining insights into how to address the challenge through
software architecture, hardware architecture, or some
combination of both.

Quantifying the effort required for parallelizing
applications is difficult because it is strongly dependent on
many factors:

1. The applications inherent parallelization, structure
and complexity.

2. The level of programmer experience, especially
with parallelizing applications.

3. The programmers’ understanding of the underlying
hardware.

4. The programmers’ familiarity with the application
being parallelized.

5. The data set being run on the application.
6. The debugging, compiler and performance tuning

tools available to the programmer.

0

0.2

0.4

0.6

0.8

1

Programmer Effort

D
eg

re
e

of
 P

ar
al

le
liz

at
io

n

Initial Analysis

Kernel 1

Kernel 2

Kernel 3

Figure 4: Abstract representation of degree of
parallelism vs. programmer effort.

Recognizing the numerous difficulties associated with
quantifying parallelization effort, it’s important to focus on
the general trends and understand a couple of concrete
examples rather than focus on the exact effort estimates. A
perfect study would lock maybe 100 professional software
engineers in their rooms and have them parallelize maybe
100 different applications, recording both the parallelism
and overall achieved performance versus time. As an
approximation of this perfect experiment, we locked one
graduate student in a room and had him parallelize 3
applications.

6.3. General Parallelization Effort Trends
Programmers generally follow a regular workflow when

parallelizing applications. This entire workflow is often
iteratively applied, working from hot regions of program
execution to colder regions.

1. Comprehend: The programmer comprehends the
application’s control and data flow. For the domain
expert, this is straightforward, though it is often the
case that the domain expert is not responsible for
parallelizing the applications.

2. Analyze: The programmer defines the regions of
parallelism in the code by identifying where there
are data- and control-independent regions of code.
Commonly, these are loop bodies with no loop-
carried data dependencies.

3. Parallelize: The programmer inserts OpenMP
pragma compiler directives to identify this
parallelism and measured performance.

As the application is tuned, the parallelization process
becomes much more invasive with respect to modifying the
original source. Moreover, at each stage, parallelism-
related bugs, called data-races, may be introduced, which
are often difficult to debug because of their non-
deterministic nature.

Generally speaking, different classes of application
require varying degrees of iteration through this workflow
and the tuning loop. For example, a simple loop which

5

performs embarrassingly parallel work over a very large
array will likely require little tuning work. Alternatively, a
loop with early exit conditions, such as a while loop, or
loop-carried dependences, such as a reduction of values
generated in each iteration, will require more tuning effort.
We believe that the typical profile for parallelization effort
is characterized by diminishing steps in performance
scaling over time as colder regions of code are considered,
the period and slope of each optimization phase determined
by the tuning effort and programmer expertise. The general
shape is illustrated in Figure 4.

7. Case Study: ART
We parallelized the SPEC2000FP application ART,

which implements a neural network used to recognize
objects in a thermal image. The neural network is first
trained on the objects, and after training is complete, the
learned images are found in the scanfield image. A window
corresponding to the size of the learned objects is scanned
across the scanfield image and serves as input for the neural
network. The neural network attempts to match the
windowed image with one of the images it has learned.

After profiling ART we found that the largest single
consumer of instructions is the train_match function.
train_match is called within a while loop which
iterates until the neural network “converges” or recognizes
the image to the best of the algorithms’ ability.

while(!converge)
 train_match();

The while loop is not good candidate for
parallelization since we don’t know the number of
iterations the loop will be executed. However, the
train_match function itself is a much more promising
candidate for parallelization because it consists of multiple
for loops of stable and homogeneous trip count (10k
iterations each for our particular input set).

train_match:
 loop 1 (10k iterations)
 sqrt(sum of loop 1 results)
 loop 2 (10k iterations)
 sqrt(sum of loop 2 results)
 loop 3 (10k iterations)
 sqrt(sum of loop 2 results)
 .
 .
 .

We first used OpenMP pragma directives to cause the
loop to be executed as a set of parallel threads. This
change did not produce speedup on our simulated CMP
systems as shown in Figure 5 (the dip in performance after
the first change). We measured the number of instructions
executed in both the original and threaded versions of the
application and found that the threaded code was executing
1.6x more instructions. This implied that the quantums of
work executed by each thread was small relative to the
thread creation and synchronization code. In other words,
there was not enough work within each loop to offset the
costs of spawning and synchronizing the individual threads.

 This problem was addressed by fusing the loops and
adding barrier operations where each loop would have
needed to synchronize, as shown below:

train_match:
 for-loop (10k iterations)
 work from loop 1
 openMP thread barrier
 sqrt(sum of loop 1 results)
 work from loop 2
 openMP thread barrier
 sqrt(sum of loop 2 results)
 work from loop 3
 openMP thread barrier
 sqrt(sum of loop 1 results)
 .
 .
 .

The OpenMP barrier directives cause all the threads to
stop at the barrier until all the threads have reached the
barrier. After the barrier, one of the threads generates the
square-root of the sum of the results generated by the
parallel threads and all the threads are able to perform the
work from the next loop in parallel. Note that on the
ACMP, serial code is scheduled to run on the faster P6
core.

0

1

2

3

4

Programmer Time

Sp
ee

du
p

vs
. 1

 P
6-

ty
pe

 C
or

e

ACMP
Niagara
P6-Tile

Figure 5: Simulated speedup of parallelized ART
benchmark vs. programmer effort.

To fix this issue, the programmer had to understand both
the implementation mechanisms underlying the OpenMP
runtime and relative overheads of work-quanta creation and
barrier synchronization. The first overhead includes thread
allocation costs and work-queue scheduling algorithms that
entail multiple threads contending for the work queue. The
barrier synchronization, on the other hand, is a relatively
well structured synchronization construct with predictable
performance characteristics, especially when the work is
relatively balanced between the threads, as it is in this case.

Given this new understanding, we decided to create
larger parallel work quantums by parallelizing the outer
loop rather than the inner loop. Again we encountered the
serializing memory allocation problem where malloc is
called within the work quantum we wish to parallelize,
shown in bold below.

6

for(y=0; y < pic->rows; y++){
 q = malloc(pic->cols);
 for(x=0; x < pic->cols; x++) {
 *q = interpolate (x, sinemap….)
 q++;
 }
 output[y] = q;
}

This problem was fixed by moving the malloc out of
the loop and allocating space for every iteration, shown in
bold below. Note that this optimization increases the
amount of virtual memory consumed by the application.

q2 = malloc(pic->rows * pic->cols)
for(y=0; y < pic->rows; y++){
 q = q2[y*pic->cols];
 for(x=0; x < pic->cols; x++){
 *q = interpolate (x, sinemap….)
 q++;
 }
 output[y] = q;
}

Our simulated performance results are shown in Figure
6. Eventually this application was parallelized to a point
that both the ACMP and Niagara approach achieved nearly
5x speedup vs. the single P6-type core.

0

1

2

3

4

5

6

Programmer Time

Sp
ee

du
p

vs
. 1

 P
6-

ty
pe

 C
or

e ACMP
Niagara
P6-Tile

Figure 6: Simulated speedup of Image
Processing application vs. programmer effort.

8. Case Study: Image Processing
Our next application is based on the command line

image processing utility “Convert” from ImageMagick.
The application reads an image file, performs the specified
transformation on the image, and stores it to as specified
output file.

We parallelized one of the image transformations, called
“wave”, which shifts each column of pixels up or down by
some amount defined by a sine wave. The amplitude and
frequency of the sine wave are specified by the user on the
command line. The program can be split into 4 steps.

1. Reading the image from the file
2. Compute the sine wave at each column position

3. Perform the wave transformation on the image
4. Write the transformed image to a file

We profiled the code and found that most of the
instructions were spent performing the wave transformation
(step 3). This transformation is a loop over the rows of the
image and within each row you loop over the columns of
the image to transform each pixel, as show below.

for(x=0; x < pic->cols; x++) {
 *q = interpolate(x, sinemap….)
 *q++;
}

Because of the pointer arithmetic, multiple instances of
the loop cannot be run in parallel. The loop needs to first
be converted to using arrays, as shown below:

for(x=0; x < pic->cols; x++)
 q[x] = interpolate(x, sinemap….)

After parallelizing this loop we found that the parallel code
is functionally correct but that performance degraded on
our simulated CMP models, as shown in Figure 6.

After analysis, we found that there was a call to
malloc inside the interpolate function (actually it
was two levels deep, in the function
AcquireImagePixel). The default McRT
implementation of malloc has a global lock because it is
calling the OS to acquire memory, and this global lock was
serializing the otherwise parallel threads. The code was
always allocating and freeing exactly the same amount of
space and therefore it was possible to statically allocate the
space, eliminating the malloc call. Since
AcquireImagePixel is called in several other
functions in the application, it is possible that other callers
of the function actually require the malloc functionality
to run correctly. To solve this problem, we created a
duplicate copy of the function, AcquireImagePixel2,
which did not use malloc, and therefore did not constrain
the parallelism. Note that while there are parallel aware
malloc packages, these incur particular overheads and do
not address the key issue for the average programmer:
Parallelizing an application requires comprehending
whether any library dependences are 1) thread-safe and 2)
scalable.

We continued to see performance degradation after
performing this optimization. Similar to ART, we
compared the instructions executed in the serial and parallel
versions and realized there wasn’t enough parallel work to
amortize the thread creation and deletion overhead. With
better understanding of McRT thread management
overhead, or with use of software tools such as Thread
Profiler, it may have been possible to realize that work we
were parallelizing was too small before actually going
through the effort of parallelizing code. However, this
imposes additional burden to the programmer to learn these
tools and understand the subtleties of threading runtime
design.

7

9. Case Study: H264 Video Decoder
The H264 decoder reads an H264 compressed video

stream and decodes it into video. The H264 standard
promises very high compression ratio while preserving
image quality. The standard divides a video picture, or
frame, into groups of sequential rows called slices. These
slices are further split into 16x16 pixel squares, or
macroblocks. Each slice is read from the stream in order,
decoded, and displayed or written out to a file. The H264
decoder performs the four major tasks:

1. Read the data for each slice
2. Decode each slice
3. Apply a low-pass smoothing filter
4. Write the data in the decoded picture buffer

After familiarizing ourselves with the basic video
encoding standard, we profiled on a test input stream and
found that most of the time was spent in the function
decode_one_frame. At a coarse level, there are 3
nested loops within the decode process

for each frame in stream
 decode__frame: for each slice
 decode_slice: for each macroblock
 decode one macroblock

Given our understanding of the standard, we knew that
there were dependencies between macroblocks in a slice,
and between frames in a stream, but that slices can be
processed in parallel. Researchers in the past [3] have
observed that there is little benefit in decoding slices in
parallel. Their observation was based on 100x100 pixel
streams which do not have many slices per frame. Small
video streams have few slices per frame because each slice
includes a constant amount of header information, and
therefore well compressed streams will have large slices.
The high definition (HD) 1280x720 pixel streams that we
focused on contain an order of magnitude more slices per
frame. In this case, the data input set had strong influence
over how to best parallelize the application, as well as the
resulting level of parallelism achieved.

Before parallelizing the loop, the code needed a
significant amount of cleanup to remove global variables
which were being used to hold values needed within the
processing of one slice, created false dependencies.

We analyzed the loop responsible for processing a slice
and built the dependency graph shown in Figure 7 (Serial).
For each slice, there is a serial dependency between the
small header block followed by processing of the slice
followed by small tail block. The header block for the
following slice is dependent on the tail block of the
previous slice.

After some analysis, we realized it was possible to make
the tail code dependent only on the head code as shown by
the dotted line in Figure 7 (Restructured). After removing
this dependency it was possible to use the OpenMP taskq
constructs (described in [15]) to reformulate the execution
behave like Figure 7 (Parallelized). When a taskq
pragma is encountered in the code, a work queue is
created and worker threads are dispatched that then wait for

work to be added to the work queue. The main thread
continues to execute the loop and when a task pragma
is encountered in the code, work specified within the task is
added to the work queue. The key to the success of the
strategy is that the body code is orders of magnitude longer
than the sum of head and tail blocks.

Figure 7: H.264 decode dependency graph

H264 at 33,000 lines is a much larger application than
the image processing application at 3000 lines, which
explains the long investigation phase (programmer time
needed before the first optimization was implemented) as
shown in Figure 8. Notice that after the initial
parallelization efforts, the ACMP outperformed the Niagara
approach by about 2.2x and after the final efforts, the
Niagara core outperformed the ACMP core by 7%.

0

1

2

3

4

5

6

Programmer Time

Sp
ee

du
p

vs
. 1

 P
6-

ty
pe

 C
or

e ACMP
Niagara
P6-Tile

Figure 8: Simulated speedup of H.264 decoder
vs. programmer effort.

10. Balancing Effort and Performance
All other software layers (including programming

languages, libraries, and tools) being equal, it takes more
programmer effort to exploit the more parallel

8

architectures. The Niagara-like cores are the primary
beneficiary of this increased performance. As observed in
our simple programming experiments, the performance of
the Niagara-like cores is lower than both the ACMP and
P6-like cores when starting out in the parallelization
process. Similarly, the performance of the Niagara-like
cores eventually gains the most from additional tuning
effort.

ACMP strikes a balance between these two architectural
approaches, equaling the performance of P6-like cores for
relatively little effort while returning nearly Niagara
performance on highly parallelized workloads. While this
approach potentially sacrifices performance at both
extremes of programmer effort, it may be necessary until
software parallelization languages and tools evolve to
better support multi-core architecture.

Software technologies will significantly reduce the
effort to parallelize code thoroughly. Unfortunately, such
software technologies have been limited to relatively niche
application spaces, such as those in High Performance
Computing applications. It is unlikely that existing tools
will proliferate widely as multi-core architectures scale for
several reasons:

1. The HPC tools focus on languages (e.g. Fortran) that
are not likely widely used in mainstream application
development, where C++, C#, and Java are more
widely used. For example, the use of OpenMP today
effectively limits development options today to C and
Fortran.

2. Mainstream software development makes extensive
use of libraries and middleware that will slowly be
revised to meet the needs of parallel application
development. This includes rewriting these libraries
for thread-safety, and scalability. The malloc library
in the ImageMagick application is a good example of
this. Earlier observations that malloc did not scale
well, has led researchers to develop scalable malloc
packages.

3. Runtimes and models for HPC are focused less on
client applications (like H.264 encode and decode).
This is manifested in less optimal runtimes for finer-
grained parallelism (preferring to optimize for very
coarse-grained thread throughput), resulting in higher
threading and scheduling overheads.

In our experiences, programmer productivity is
paramount for mainstream software developers. Without
solving the issues above, software vendors will be slow to
optimize their applications. Developing and proliferating
mainstream tools will likely take ~10 years, using a well
known rule-of-thumb.

From a purely software productivity-performance
tradeoff point of view, these observations imply that
ACMP architectures will be favored to manage the risks of
committing to the “pure” approaches of the P6-like and
Niagara-like architectures. Silicon process scaling trends
favor the ACMP approach because even when (and if)
effective programming tools are available ~10 years from
now, including P6-like cores in an otherwise Niagara-like
computing fabric is likely to be of negligible cost.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Programmer Time

D
eg

re
e

of
 P

ar
al

le
lis

m

ART

Image Process

Video Decode

Figure 9: Measured of degree of parallelism vs.
programmer effort

There are other factors that drive the decision to expend
effort and may drive a preference for ACMP architectures.
For applications based on relatively stable standards, like
H.264, it is more reasonable to expect that the software
developer will invest more time to optimize code. This will
be well rewarded given our experiences in optimizing
H.264 (see Figure 9). On the other hand, applications that
evolve rapidly because of competitive pressure or
applications that are likely to be highly specialized may not
be worth spending significant effort in optimization. In
such cases, it may be worth expending less effort (or none)
to parallelize the application. The return on effort for Art
and ImageMagick for example, do not justify aggressive
optimization, especially if these are highly specialized (Art)
or likely to be part a competitive software ecosystem
(ImageMagick). An ACMP architecture that returns
reasonable performance for both levels of effort is
attractive to minimize the overall performance risk for the
buyer.

11. Conclusion / Future Work
We have demonstrated that an ACMP outperforms

Niagara unless the program is more then 95% parallelized.
Therefore, unless we are able to apply the software effort
required to achieve this high level of parallelism, ACMP
outperforms the Niagara approach. Process scaling will
further motivate ACMP vs. the Niagara approach, since the
throughput opportunity cost of replacing 4 Niagara cores
with a single P6 cores is amortized across more Niagara
cores.

We believe there are hardware and software
opportunities to reduce the parallelization effort and
dramatically improve overall performance. Computer
architecture trends imply that research in this area will be
tremendously important in the future.

12. References
[1] Balakrishnan, S.; Ravi Rajwar; Upton, M.; Lai, K.,

"The impact of performance asymmetry in emerging
multicore architectures," Computer Architecture,

9

2005. ISCA '05. Proceedings. 32nd International
Symposium on , vol., no.pp. 506- 517, 4-8 June 2005

[2] Morad, T.Y.; Weiser, U.C.; Kolodnyt, A.; Valero,
M.; Ayguade, E., "Performance, power efficiency and
scalability of asymmetric cluster chip
multiprocessors," Computer Architecture Letters,
IEEE , vol.5, no.1pp. 14- 17, Jan.-June 2006

[3] Yen-Kuang Chen, Xinmin Tian, Steven Ge, Milind
Girkar, "Towards Efficient Multi-Level Threading of
H.264 Encoder on Intel Hyper-Threading
Architectures," ipdps, p. 63b, 18th International
Parallel and Distributed Processing Symposium
(IPDPS'04) - Papers, 2004.

[4] Grochowski, E.; Ronen, R.; Shen, J.; Hong Wang,
"Best of both latency and throughput," Computer
Design: VLSI in Computers and Processors, 2004.
ICCD 2004. Proceedings. IEEE International
Conference on , vol., no.pp. 236- 243, 11-13 Oct.
2004

[5] Annavaram, M.; Grochowski, E.; Shen, J.,
"Mitigating Amdahl's law through EPI throttling,"
Computer Architecture, 2005. ISCA '05. Proceedings.
32nd International Symposium on , vol., no.pp. 298-
309, 4-8 June 2005

[6] Kalla, R.; Balaram Sinharoy; Tendler, J.M., "IBM
Power5 chip: a dual-core multithreaded processor,"
Micro, IEEE , vol.24, no.2pp. 40- 47, Mar-Apr 2004

[7] Kumar, R., Farkas, K., Jouppi, N. P., Ranganathan,
P., and Tullsen, D. M. 2006. Processor Power
Reduction Via Single-ISA Heterogeneous Multi-Core
Architectures. IEEE Comput. Archit. Lett. 1, 1 (Jan.
2006), 5-8.

[8] Kumar, R., Tullsen, D. M., Jouppi, N. P., and
Ranganathan, P. 2005. Heterogeneous Chip
Multiprocessors. Computer 38, 11 (Nov. 2005), 32-
38.

[9] Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi,
N. P., and Farkas, K. I. 2004. Single-ISA
Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. In
Proceedings of the 31st Annual international
Symposium on Computer Architecture (München,
Germany, June 19 - 23, 2004).

[10] Kumar, R., Tullsen, D. M., and Jouppi, N. P. 2006.
Core architecture optimization for heterogeneous
chip multiprocessors. In Proceedings of the 15th
international Conference on Parallel Architectures
and Compilation Techniques (Seattle, Washington,
USA, September 16 - 20, 2006). PACT '06. ACM
Press, New York, NY, 23-32.

[11] Kumar, R.; Farkas, K.I.; Jouppi, N.P.; Ranganathan,
P.; Tullsen, D.M., "Single-ISA heterogeneous multi-
core architectures: the potential for processor power
reduction," Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on , vol., no.pp. 81- 92, 3-5 Dec. 2003

[12] Amdahl, G. M. 2000. Validity of the single processor
approach to achieving large scale computing
capabilities. In Readings in Computer Architecture,
M. D. Hill, N. P. Jouppi, and G. S. Sohi, Eds. Morgan
Kaufmann Publishers, San Francisco, CA, 79-81.

[13] Gustafson, J. L. 1988. Reevaluating Amdahl's law.
Commun. ACM 31, 5 (May. 1988), 532-533.

[14] Davis, J.D.; Laudon, J.; Olukotun, K., "Maximizing
CMP throughput with mediocre cores," Parallel
Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on , vol.,
no.pp. 51- 62, 17-21 Sept. 2005

[15] X. Tian, M. Girkar, S. Shah, D. Armstrong, E. Su,
and P. Petersen. “Compiler support of the
workqueuing execution model for intel smp
architectures”. In Proc. of the Eighth International
Workshop on High-Level Parallel Programming
Models and Supportive Environments, pages 47–55,
Nice, Paris, Sep 2003.

[16] Becchi, M. and Crowley, P. 2006. Dynamic thread
assignment on heterogeneous multiprocessor
architectures. In Proceedings of the 3rd Conference
on Computing Frontiers (Ischia, Italy, May 03 - 05,
2006). CF '06. ACM Press, New York, NY, 29-40.

[17] Figueiredo, R.J.O.; Fortes, J.A.B., "Impact of
heterogeneity on DSM performance," High-
Performance Computer Architecture, 2000. HPCA-6.
Proceedings. Sixth International Symposium on ,
vol., no.pp.26-35, 2000

[18] Grant, R.E.; Afsahi, A., "Power-performance
efficiency of asymmetric multiprocessors for multi-
threaded scientific applications," Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. 20th International , vol., no.pp. 8 pp.-, 25-29
April 2006

[19] Engin İpek, M. Kırman, N. Kırman, and J.F.
Martínez. Accommodating workload diversity in chip
multiprocessors via adaptive core fusion. In
Workshop on Complexity-effective Design, conc. with
ISCA, Boston, MA, June 2006

[20] Pollack, F. J. 1999. New microarchitecture
challenges in the coming generations of CMOS
process technologies (keynote address)(abstract
only). In Proceedings of the 32nd Annual ACM/IEEE
international Symposium on Microarchitecture
(Haifa, Israel, November 16 - 18, 1999).

[21] Saha, H. et al., Enabling Scalability and Performance
in a Large Scale Chip Multiprocessor Environment,
Submitted to Eurosys 2007.

[22] Borkar, S. Design Challenges of Technology Scaling.
IEEE Micro. 1999.

10

http://csl.cornell.edu/%7Eengin/
http://csl.cornell.edu/%7Emkirman/
http://csl.cornell.edu/%7Enkirman/
http://csl.cornell.edu/%7Emartinez/
http://csl.cornell.edu/%7Emartinez/

	1. Introduction: The Power Limited Era
	2. Architecting for Threaded Workloads
	2.1. The “Tiled P6” Approach
	2.2. The “Niagara” Approach
	2.3. Asymmetric Chip Multiprocessors
	2.4. What is power in the context of an ACMP?

	3. Background and Related Work
	4. Contributions of this Paper
	5. Degree of Parallelism
	5.1. Performance of ACMP vs. alternative

	6. Parallelizing Applications
	6.1. Experiment Methodology
	6.2. Quantifying Parallelization Effort
	6.3. General Parallelization Effort Trends

	7. Case Study: ART
	8. Case Study: Image Processing
	9. Case Study: H264 Video Decoder
	10. Balancing Effort and Performance
	11. Conclusion / Future Work
	12. References

