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Abstract

Chip multiprocessor (CMP) systems share a large portiomefrhemory subsystem among multiple cores. Recent proposals
have addressed high-performance and fair management eé thleared resources; however, none of them take into account
prefetch requests. Without prefetching, significant genmce is lost, which is why existing systems prefetch. Btaking into
account prefetch requests, all recent shared-resourceagement proposals often significantly degrade both peidioca and
fairness, rather than improve them in the presence of piiieg.

This paper is the first to propose mechanisms that both matiegshared resources of a multi-core chip to obtain high-
performance and fairness, and also exploit prefetchingajfdy our proposed mechanisms to two resource-based marayge
techniques for memory scheduling and one source-thrgttimssed management technique for the entire shared melystgns.

We show that our mechanisms improve the performance of aedsgstem that uses network fair queuing, parallelism-awar
batch scheduling, and fairness via source throttling byo%,.10.9%, and 11.3% respectively, while also significaintigroving
fairness.

1. Introduction

Chip-multiprocessor (CMP) systems commonly share a laogégm of the memory subsystem between different
cores. Main memory and shared caches are two examples afdshegources. Memory requests from different
applications executing on different cores of a CMP can faterwith and delay each other in the shared memory
subsystem. Compared to a scenario where each applicatisralone on the CMP, this inter-core interference causes
the execution of simultaneously running applications tawstiown. However, sharing memory system resources
affects the execution of different applications very diffietly because the resource management algorithms entploye
in the shared resources are unfair [29]. As a result somecagtioins are unfairly slowed down significantly more than
others.

Figure 1 shows two examples of vastly differing effects afoierce-sharing on simultaneously executing applica-
tions on a 2-core CMP system (Section 4 describes our expatahsetup). Whehzip2andart run simultaneously
with equal priorities, the inter-core interference caubgdhe sharing of memory system resources slows dozvn2
by 5.2Xcompared to when it is run alone whiget slows down by onlyl.15X In order to achieve system level fair-
ness or quality of service (QoS) objectives, the systenwswét (operating system or virtual machine monitor) expects
proportional progress afqual-priority applications when running simultaneously. Clearly, digjges in slowdown
like those shown in Figure 1 due to sharing of the memory systsources between simultaneously running equal-
priority applications is unacceptable since it would makienty-based thread scheduling policies ineffective,[10

29].
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Figure 1. Disparity in slowdowns due to unfairness in the mem ory system

To mitigate this problem, previous papers [17, 20, 31, 15,38 18, 30] on fair memory system design for
multi-core systems mainly focused on partitioning a pattc shared resource (cache space, cache bandwidth, or
memory bandwidth) to provide fairness in the use of that ethaesource. However, none of these prior papers
directly target gair memory system design that provides fair sharinglbfesources togethetWe define a memory
system design dair if the slowdowns of equal-priority applications runningsiltaneously on the cores sharing that
memory system are the same (this definition has been usedeareserior papers [35, 25, 3, 11, 29]). As shown in
previous research [2], employing separate uncoordinaeddss techniques together does not necessarily result in
a fair memory system design. This is because fairness mesthatn different resources can contradict each other.
Our goal in this paper is to develop a low-cost architectural techaithat allows system software fairness policies to
be achieved in CMPs by enabling fair sharing of émire memory systemwithout requiring multiple complicated,

specialized, and possibly contradictory fairness tealeddor different shared resources.

Basic Idea: To achieve this goal, we propose a fundamentally new meshmatiiat 1) gathers dynamic feedback
information about the unfairness in the system and 2) use#lormation to dynamically adapt the rate at which the
different cores inject requests into the shared memoryystbs such that system-level fairness objectives are met.
To calculate unfairness at run-time, a slowdown value iBreded for each application in hardware. Slowdown is
defined ad spared/ Tatone, WhereTspq,q i the number of cycles it takes to run simultaneously witieotipplications
and T, is the number of cycles it would have taken the applicatiorutoalone. Unfairness is calculated as the
ratio of the largest slowdown to the smallest slowdown ofdineultaneously running applications. If the unfairness in
the system becomes larger than timfairness thresholdet by the system software, the core that interferes moht wit
the core experiencing the largest slowdown is throttledmmloWhis means that the rate at which the most interfering
core injects memory requests into the system is reduceddir ¢o reduce the inter-core interference it generates. If
the system softwarefairness goalis met, all cores are allowed to throttle up to improve systeroughput while
system unfairness is continuously monitored. The fairmesgic/goal, unfairness threshold, and throttling rates a

all configurable by system software. This configurable hamdwsubstrate enables the system software to achieve
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different QoS/fairness policies: it can determine the bha¢abetween fairness and system throughput, dictate elifter
fairness objectives, and enforce thread priorities in thi@e& memory system.

Summary of Evaluation: We evaluate our technique on both 2-core and 4-core CMP ragsite comparison to
three previously-proposed state-of-the-art shared harelnesource management mechanisms. Experimental results
across ten multi-programmed workloads on a 4-core CMP shawaur proposed technique improves average system
performance by 25.6%/14.5% while reducing system unfasrims 44.4%)/36.2% compared respectively to a system
with no fairness techniques employed and a system with-sfatee-art fairness mechanisms implemented for both
shared cache capacity [32] and the shared memory cont[80&r

Contributions: We make the following contributions:

1. We introduce a low-cost, hardware-based and systenvaatconfigurable mechanism to achieve fairness goals
specified by system software in teatire shared multi-core memory system.

2. We introduce a mechanism that collects dynamic feedbadke unfairness of the system and adjusts request
rates of the different cores to achieve the desired faifpes®rmance balance. By performisgurce-basedair-
ness control, this work eliminates the need for complicaelividual resource-basethirness mechanisms that are
implemented independently in each resource and that eeqaordination.

3. We qualitatively and quantitatively compare our progbezhnique to multiple prior works in fair shared cache
partitioning and fair memory scheduling. We find that ourpmsal, while simpler, provides significantly higher
system performance and better system fairness compareeviops proposals.

2. Background and Motivation

We first present brief background on how we model the sharadanesystem of CMPs. We then motivate our
approach to providing fairness in the entire shared memgtem by showing how employing resource-based fairness
techniques does not necessarily provide better overatidas.

2.1. Shared CMP Memory Systems

In this paper, we assume that the last-level (L2) cache afidhig DRAM bandwidth are shared by multiple
cores on a chip as in many commercial CMPs [38, 40, 16, 1]. [Eaoh has its own L1 cache. Miss Status Hold-
ing/information Registers (MSHRS) [23] keep track of alfjuests to the shared L2 cache until they are serviced.
When an L1 cache miss occurs, an access request to the L2isawrkated by allocating an MSHR entry. Once the
request is serviced by the L2 cache or DRAM system as a refaltache hit or miss respectively, the corresponding
MSHR entry is freed and used for a new request. Figure 2 gileghalevel view of such a shared memory system.

The number of MSHR entries for a core indicates the total remalb outstanding requests allowed to the L2 cache
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and DRAM system. Therefore increasing/decreasing the mumbMSHR entries for a core can increase/decrease

the rate at which memory requests from the core are injectedihe shared memory system.

2.2. Motivation Memory

Controller

|

L2 Cache

Most prior papers on providing fairness in shared resoufoess on

partitioning of a single shared resource. However, by paniing a single !

shared resource, the demands on other shared resourcehamgecsuch

that neither system fairness nor system performance isowegr In the ]—b—r]MSHR allocato

following example, we describe how constraining the rateldith an ap-

plication’'s memory requests are injected to the shareduress can result

in higher fairness and system performance than employimngpé&atition-

ing of a single resource. Figure 2. Shared CMP Memory System

Figure 3 shows the memory-related stall timaf applications A and
B either running alone on one core of a 2-core CMP (partsd®)-0r, running concurrently with equal priority
on different cores of a 2-core CMP (parts ((e)-(j)). For dligity of explanation, we assume an application stalls
when there is an outstanding memory request, focus on rexjgemg to the same cache set and memory bank, and
assume all shown accesses to the shared cache occur befoepEtement happens. Application A is very memory-
intensive, while application B is much less memory-inteasas can be seen by the different memory-related stall
times they experience when running alone (Figures 3 (3)-(8% prior work has observed [30], when a memory-
intensive application with already high memory-relateligtime interferes with a less memory-intensive applicati
with much smaller memory-related stall time, delaying thenfer improves system fairness because the additional
delay causes a smaller slowdown for the memory-intensipéiggtion than for the non-intensive one. Doing so can
also improve throughput by allowing the less memory-intenapplication to quickly return to its compute-intensive
portion while the memory-intensive application continwesting on memory.

Figures 3 (e) and (f) show the initial L2 cache state, accedsr@and memory-related stall time when no fairness
mechanism is employed in any of the shared resources. AgtigiitA's large number of memory requests arrive at the
L2 cache earlier, and as a result, the small number of mensgyeasts from application B are significantly delayed.
This causes large unfairness because the compute-irgeaggilication B is slowed down significantly more than the

already-slow memory-intensive application A. Figures Bdgd (h) show that employing a fair cache increases the

1stall-time is the amount of execution time in which the agatiion cannot retire instructions. Memory-related stalkt caused by a memory request consists
of: 1) time to access the L2 cache, and if the access is a mian@)o wait for the required DRAM bank to become availabled &inally 3) time to access
DRAM.
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Figure 3. Access pattern and memory-related stall time of re quests when application A running alone (a, b), application B running alone
(c, d), A and B running concurrently with no fairness control (e, f), fair cache (g, h), and fair source throttling (i, j)

fairnessin utilization of the cachdy allocatingan equal number of wayfsom the accessed set to the two equal-
priority applications. This increases application A's lsaanisses compared to the baseline with no fairness control.
Even though application B gets more hits as a result of farial of the cache, its memory-related stall time does not
reduce due to increased interference in the main memorgsygbm application As increased misses. Application
B’s memory requests are still delayed behind the large nurmobmemory requests from application A. Application
A's memory-related stall time increases slightly due taritseased cache misses, however, since application Adgirea
had a large memory-related stall time, this slight incredses not incur a large slowdown for it. As a result, fairness
improves slightly, but system throughput degrades bediigsgystem spends more time stalling rather than computing

compared to no fair caching.

In Figure 3, if the unfair slowdown of application B due to &pation A is detected at run-time, system fair-
ness can be improved by limiting A's memory requests andaieduthe frequency at which they are issued into the
shared memory system. This is shown in the access order antbipeelated stall times of Figures 3 (i) and (j).

If the frequency at which application As memory requests imjected into the shared memory system is reduced,
the memory access pattern can change as shown in Figure\8diuse the ternthrottled requestso refer to those
requests from application A that are delayed when accesisinghared L2 cache due to A's reduced injection rate. As

a result of the late arrival of thegbrottled requestsapplication B's memory-related stall time significantgduces
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(because As requests no longer interfere with B’s) whilelejation A's stall time increases slightly. Overall, this
ultimately improves both system fairness and throughpuotgared to both no fairness control and just a fair cache.
Fairness improves because the memory-intensive applicetidelayed such that the less intensive application’'smem
ory related-stall time does not increase significantly carad to when running alone. Delaying the memory-intensive
application does not slow it down too much compared to wheming alone, because even when running alone it
has high memory-related stall time. System throughput avgs because the total amount of time spent computing
rather than stalling in the entire system increases, as eaedn by comparing the stall times in Figures 3 (f) and (h)
to Figure 3 (j).

Thekey insight is thatboth system fairness and throughput can improve by detebigh system unfairness at
run-time and dynamically limiting the number of or delayitig issuing of memory requests from the aggressive
applications In essence, we propose a new approach that perfeouse-basedairness in the entire memory
system rather thamdividual resource-basethirness that implements complex and possibly contradidiirness
mechanisms in each resource. Sources (i.e., cores) cactadly achieve fairness by throttling themselves based
on dynamic unfairness feedback, eliminating the need f@émenting possibly contradictory/conflicting fairness
mechanisms and complicated coordination techniques leatthem.

3. Fairness via Source Throttling

To enable fairness in the entire memory system, we propasaess via Source ThrottlinST). The proposed
mechanism consists of two major componentsiubtime unfairness evaluaticand 2)dynamic request throttling

3.1. Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an estinafithe unfairness in the CMP memory system. We
use the following definitions in determining unfairness:

1) We define a memory system desigtaisif the slowdowns of equal-priority applications runningnsiltaneously
on the cores of a CMP are the same, similarly to previous wi@%s25, 3, 11, 29].

2) We define slowdown &B},red/Taione WhereTspqreq 1S the number of cycles it takes to run simultaneously with
other applications and,,,. is the number of cycles it would have taken the applicatiorutbalone on the same
system.

The main challenge in the design of the runtime unfairneafuation component is obtaining information about
the number of cycles it would have taken an application toalame, while it is running simultaneously with other
applications. To do so, we estimate the numbeextfa cycledt takes an application to execute due to inter-core

interference in the shared memory system, cdllgd. ;. Using this estimatel ;... is calculated a%,4rcd — Teacess-
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The following equations show hoimdividual Slowdown (ISpf each application andnfairnessof the system are

calculated.

Tshared MAX{ISy,IS1,....,ISN_1}

MIN{I1So,IS1,...,I1Sn_1}

1S; = , Unfairness =

Talone
1

Section 3.3 explains in detail how the runtime unfairnesduation component is implemented and in particular
how T,.cess iS estimated. Assuming for now that this component is ing@lage next explain how the information it
provides is used to determine how each application is flebtd achieve fairness in the entire shared memory system.

3.2. Dynamic Request Throttling

This component is responsible for dynamically adjusting ridite at which each core/applicattamakes requests
to the shared resources. This is done on an interval baskeoassn Figure 4.

Interval 1 Interval 2 Interval 3

w Calculate Unfairness &
Slovllown

Estimation  Determine request rates
. for Interval 2 using feedback
Time from Interval 1

Figure 4. FST’s interval-based estimation and throttling

An interval ends when each core has executed a certain nushbestructions from the beginning of that interval.
During each interval (for examplaterval 1in Figure 4) the runtime unfairness evaluation componettiaya feed-
back used to estimate the slowdown of each application.@béginning of the next intervaiterval 2), the feedback
information obtained during the prior interval is used tokma decision about the request rates of each application
for that interval. More precisely, slowdown values estietatiuringinterval 1are used to estimate unfairness for the
system. That unfairness value is used to determine the seqaies for the different applications for the duration of
Interval 2 During the next intervallfiterval 2), those request rates are applied, and unfairness exauatperformed
again. The algorithm used to adjust the request rate of ggulication using the unfairness estimate calculated in the
prior interval is shown in Algorithm 1. To ease explanatioAkyorithm 1 is simplified for dual-core configurations.
Section 3.5 presents the more general algorithm for mome tiia cores.

We define multiple possible levels of aggressiveness fordhaest rate of each application. The dynamic request
throttling component makes a decision to increase/deereakeep constant the request rate of each application at
interval boundaries. We refer to increasing/decreasiegdguest rate of an application as throttling the appbcati

up/down.

2since each core runs a separate application, we use the saneland application interchangeably in this paper.



Algorithm 1 Dynamic Request Throttling
if Estimated Unfairness > Un fairness Threshold then
Throttle down application with the smallegbwdown
Throttle up application with the largestowdown
ResetSuccessive Fairness Achieved Intervals

else
if Successive Fairness Achieved Intervals = threshold then
Throttle all applications up
ResetSuccessive Fairness Achieved Intervals
else
IncrementSuccessive Fairness Achieved Intervals
end if
end if

At the end of each interval, the algorithm compares the umégis estimated in the previous interval to the unfairness
threshold that is defined by system software. If the fairrggsal has not been met in the previous interval, the
algorithm reduces the request rate of the application viighdmallest individual slowdown value and increases the
request rate of the application with the largest individslalvdown value. This reduces the number and frequency of
memory requests generated for and inserted into the merasources by the application with the smallest estimated
slowdown, thereby reducing its interference with otheresorThe increase in the request rate of the application with
the highest slowdown allows it to be more aggressive in atptp Memory-Level Parallelism (MLP) [12, 4] and
as a result reduces its slowdown. If the fairness goal is meafpredetermined number of intervals (tracked by
a Successive Fairness Achieved Intervals counter in Algorithm 1), the dynamic request throttling quonent
attempts to increase system throughput by increasing theest rates of all applications by one level. This is done
because our proposed mechanism strives to increase thpoughile maintaining the fairness goals set by the system
software. Increasing the request rate of all applicatioighirresult in unfairness. However, the unfairness evabmati

during the interval in which this happens detects this agnae and dynamically adjusts the requests rates again.

Throttling Mechanisms: Our mechanism increases/decreases the request rate a@f@aictation in multiple ways:
1) Adjusting the number of outstanding misses an applinatan have at any given time. To do so,M8HR quota
which determines the maximum number of MSHR entries an egfidin can use at any given time, is enforced for
each application. Reducing MSHR entries for an applicataluces the pressure caused by that application’s requests
on all shared memory system resources by limiting the numbarncurrent requests from that application contending
for service from the shared resources. This reduces othairltsineously running applications’ memory-related stall
times and gives them the opportunity to speed up. 2) Adjgdtie frequency at which requests in the MSHRs are

issued to access LReducing this frequency for an application reduces thebarmaf memory requests per unit time
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from that application that contend for shared resourcess @attows memory requests from other applications to be
prioritized in accessing shared resources even if the egpdin that is throttled down does not have high MLP to begin
with and is not sensitive to reduction in the number of its M&H We refer to this throttling technique isquency

throttling. We use both of these mechanisms to reduce the interferansed by the application that experiences the

smallest slowdown on the application that experiencesaigeét slowdown.
3.3. Unfairness Evaluation Component Design

Tsnareq 1S Simply the number of cycles it takes to execute an appdican an interval. Estimating ;e IS
more difficult, and FST achieves this by estimatifig..s for each core, which is the number of cycles the core’s
execution time is lengthened due to interference from otbegs in the shared memory system. To estirfiatg. ss,
the unfairness evaluation component keeps track of irdeg-interference each core incurs.

Tracking Inter-Core Interference: We consider three sources of inter-core interference: éhea2) DRAM bus
and bank conflict, and 3) DRAM row-buffér.Our mechanism uses amter ferencePerCore bit-vector whose
purpose is to indicate whether or not a core is delayed duetér-core interference. In order to track interference
from each source separately, a copyleter ference PerCore is maintained for each interference source. A main
copy which is updated by taking the union of the differénter ference PerCore vectors is eventually used to
updateT....ss as described below. When FST detects inter-core interberéor corei at any shared resource, it
sets biti of the Inter ferencePerCore bit-vector, indicating that the core was delayed due torfatence. At the
same time, it also sets dmter feringCoreld field in the correspondininterfered-withmemory request’'s MSHR
entry. This field indicates which core interfered with théxjuest and is later used to reset the corresponding bit in
the Inter ferencePerCore vector when thenterfered-withrequest is scheduled/serviced. We explain this process
in more detail for each resource below in Sections 3.3.133.8 a memory request has not been interfered with, its
Inter feringCoreld will be the same as the core id of the core it was generated by.

Updating T..c.ss: FST stores the number ektra cyclest takes to execute a given interval’s instructions due to
inter-core interference€l(,..ss) in an ExzcessCycles counter per core. Every cycle, if thenter ference PerCore
bit of a core is set, FST increments the corresponding cdie’sessCycles counter. Section 3.3.5 shows how this
can be done less frequently.

Algorithm 2 shows how FST calculatdszcessCycles for a given corei. The following subsections explain

in detail how each source of inter-core interference is tialk¢o account to setnter ferencePerCore. Table 1

30n-chip interconnect can also experience inter-core fitence [5]. Feedback information similar to that obtairfiedthe three sources of inter-core
interference we account for can be collected for the on-sitgrconnect. That information can be incorporated intoteahnique seamlessly, which we leave as
part of future work.



summarizes the required storage needed to implement thieamisens explained here.

Algorithm 2 Estimation of7,,...ss for corei
Every cycle
if inter-core cache or DRAM bus or DRAM bank or
DRAM row-buf fer inter ference then
setinter ferencePerCore bit i
setinter feringCoreld in delayed memory request
end if
if Inter ferencePerCore biti is setthen
IncrementEzcessCycles for corei
end if

Every L2 cache fill for a miss due to interference OR

Every time a memory request which is a row-buffer miss due tonterference is serviced
resetinter ferencePerCore bit of corei
Inter feringCoreld of corei =i (no interference)

Every time a memory request is scheduled to DRAM
if Corei has no requests waiting on any bank which is busy serviciothan corg (j != i) then
resetinter ferencePerCore bit of corei
end if

3.3.1. Cache Interferenceln order to estimate inter-core cache interference, fohemmrei we need to track the
last-level cache misses that are caused by any otherjcofe do so, FST uses a pollution filter for each core to
approximate such misses. The pollution filter is a bit-vettat is indexed with the lower order bits of the accessed
cache line’s addresSsIn the bit-vector, a set entry indicates that a cache linermghg to the corresponding core was
evicted by another core’s request. When a request from jcamplaces one of corés cache lines, corés filter is
accessed using the evicted line's address, and the congisygobit is set. When a memory request from comgsses
the cache, its filter is accessed with the missing addresthel€orresponding bit is set, the filter predicts that this
line was previously evicted due to inter-core interfereand the bit in the filter is reset. When such a prediction is
made, once the interfered-with request is scheduled to DR#Mnter ference PerCore bit corresponding to core

i is set to indicate that coids experiencing extra execution cycles due to cache imnfe. Once the interfered-with
memory request is finished receiving service from the memsgsfem and the corresponding cache line is filled, core

i's filter is accessed and the bit is reset and so is teBter ference PerCore bit.

3.3.2. DRAM Bus and Bank Conflict Interference Inter-core DRAM bank conflict interference occurs when core
i's memory request cannot access the bank it maps to, becaagaest from some other corés being serviced by
that memory bank. DRAM bus conflict interference occurs wa&ore cannot use the DRAM because another core

is using the DRAM bus. These situations are easily deteztaiihe memory controller, as described in [29]. When

4We empirically determined the pollution filter for each ctwehave 2K-entries in our evaluations.
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such interference is detected, theter ference PerCore bit corresponding to coreis set to indicate that corieis
stalling due to a DRAM bus or bank conflict. This bit is resetewmo request from cotieis being prevented access

to DRAM by the other cores’ requests.

3.3.3. DRAM Row-Buffer Interference This type of interference occurs when a potential row-hbufiie of corei
when running alone is converted to a row-buffer miss/confliee to a memory request of some cpmhen running
together with others. This can happen if a request from col@ses a DRAM row opened by a prior request from core
i that is also accessed by a subsequent request from.cbodrack such interference,Zhadow Row-buffer Address
Register (SRAR}¥ maintained for each core for each bank. Whenever c®@rmemory request accesses some Ryw
the SRAR of coré is updated to rovR. Accesses to the same bank from some other icdmenot affect the SRAR
of corei. As such, at any point in time, coils SRAR will contain the last row accessed by the last memeguest
serviced from that core in that bank. When coseanemory request suffers a row-buffer miss because anotivej’s
row is open in the row-buffer of the accessed bank, the SRA®RE is consulted. If the SRAR indicates a row-buffer
hit would have happened, then inter-core row-buffer irerhce is detected. As a result, theer ference PerCore

bit corresponding to coreis set. Once the memory request is serviced, the correspoidier ference PerCore

bit is reset

3.3.4. Slowdown Due to Throttling When an application is throttled, it experiences some stawddue to the
throttling. This slowdown is different from the inter-cdarderference induced slowdown estimated by the mechanisms
of Sections 3.3.1 to 3.3.3. Throttling-induced slowdowa f&inction of an application’s sensitivity to 1) the number
of MSHRs that are available to it, 2) the frequency of injegtrequests into the shared resources. Using profiling,
we determine for each throttling levél the corresponding slowdown (due to throttlinf)of an applicationA. At
runtime, any estimated slowdown for applicatidnvhen running at throttling levelis multiplied by f. We find that
accounting for this slowdown using this profiling inforn@iiimproves the system performance gained by FST by 4%
on 4-core systems, as we evaluate in Section 5.10.

Slowdown due to throttling can also be tracked by maintgjrircounter for the number of cycles each application
A stalls because it can not obtain an MSHR entry because dfmitetl MSHR quota We separately keep track of
the number of such cycles and refer to them as those exceles ayisich are due to throttling (as opposed to excess
cycles due to interference from other applications). Weuks how this information is used later in a more general

form of dynamic request throttling presented in Section Al§orithm 3.

5To be more precise, the bit is reset “row buffer hit latencytles before the memory request is serviced. The memoryestquould have taken at least
“row buffer hit latency” cycles had there been no interfaen

11



3.3.5. Implementation Details Section 3.3 describes how separate copiegratr ferencePerCore are main-
tained per interference source. The main copy which is ugdelSY for updatingdl.....ss is physically located close
by the L2 cache. Note that shared resources may be locatexvear from each other on the chip. Any possible
timing constraints on the sending of updates tothéer ference PerCore bit-vector from the shared resources can
be eliminated by making these updates periodically. IniBed&.5 we show that making updates as infrequently as
even once every 1000 cycles provides negligible loss ofifidebmpared to ideally making updates every cycle.

3.4. System Software Support

Different Fairness Objectives: System-level fairness objectives and policies are gelyetatided by the system
software (the operating system or virtual machine monit&$T is intended as architectural support for enforcing
such policies in shared memory system resources. faineess goalto be achieved by FST can be configured by
system software. To achieve this, we enable the systema@ftio determine the nature of the condition that triggers
Algorithm 1. In the explanations of Section 3.2, thiggering conditionis

Triggering Condition (1) : “Estimated Unfairness > Un fairness Threshold”

System software might want to enforce different triggeriogditions depending on the system’s fairness/QosS re-
quirements. To enable this capability, FST implementsdifit triggering conditions from which the system software
can choose. For example, the fairness goal the system seftwants to achieve could be to keep the maximum
slowdown of any application below a threshold value. To erdsuch a goal, the system software can configure FST
such that the triggering condition in Algorithm 1 is changed

Triggering Condition (2) : “ Estimated Slowdown; > Max. Slowdown Threshold”

Alternatively, per application slowdown thresholds canspecified. In this case, if any application slows down
beyond its own specified threshold, Algorithm 1 will be triggd.

Thread Weights: So far, we have assumed all threads are of equal importai&ecén be seamlessly adjusted to
distinguish between and provide differentiated serviodghteads with different priorities. We add the notiortlulead
weightsto FST, which are communicated to it by the system softwaiguspecial instructions. Higher slowdown
values are more tolerable for less importankoover weighthreads. To incorporate thread weights, FST wesighted
slowdownvalues calculated as:

WeightedSlowdown; = Measured Slowdown; x Weight;

By scaling the real slowdown of a thread with its weight, a&#d with a higher weight appears as if it slowed down
more than it really did, causing it to be favored by FST. Sath.4 quantitatively evaluates FST with one different

fairness goal and threads with different weights.
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Thread Migration and Context Switches: FST can be seamlessly extended to work in the presence @fdthre
migration and context switches. When a context switch happe a thread is migrated, the interference state related
to that thread is cleared. When a thread restarts executti@gaacontext switch or migration, it starts at maximum
throttle. The interference caused by the thread and thefénémce it suffers are dynamically re-estimated and FST

adapts to the new set of co-executing applications.

3.5. General Dynamic Request Throttling

Scalability to More Cores: When the number of cores is greater than two, a more genearal d Algorithm 1
is used. The design of thenfairness evaluatiomomponent for the more general form of Algorithm 1 is slightl
different. This component gathers the following extra mfiation for the more general form of dynamic request
throttling presented in Algorithm 3: a) for each card-ST maintains a set di-1 counters, wherdl is the number
of simultaneously running applications. We refer to thisks& counters that FST uses to keep track of the amount
of the inter-core interference caused by any other garethe system foi as ExcessCycles;;. This information
is used to identify which of the other applications in theteys generates the most interference for dore) FST
maintains the total inter-core interference an applicatia corei experiences due to interference from other cores
in aTotal ExcessCyclesInter ference; counter per core, and c) as described in the last paragrapbation 3.3.4,
those excess cycles that are caused as a result of an ajpplicaing throttled down are accounted for separately in a
Total ExcessCyclesT hrottling; counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 thaesghe extra information described above to make
more accurate throttling decisions in a system with more tiweo cores. The four most important changes are as
follows:

First, when the algorithm is triggered due to unfair slowdas¥ corei, FST compares thExzcessCycles;; counter
values for all coreg # i to determine which other core is interfering most with coréhe core found to be the most
interfering is throttled down. We do this in order to reduke slowdown of the core with the largest slowdown value,
and improve system fairness.

Second, the first line of the algorithm shows how we changectimglition that triggers throttling. Throttling is
triggered if both the estimated unfairnedg ¢z. Slowdownl/ Min. Slowdown) and the ratio between the slowdowns
of core with the largest slowdowmp,;,.,) and the core generating the most interferentgp, e, fering) are greater
thanUn fairness Threshold. Doing so helps reduce excessive throttling when two appitias significantly inter-
fere with each other and alternate between being identiedp@,,., and Appinier fering. Consider the case where

application A and B alternate between beidgp,., (Which hasMaz. Slowdown) and Appinter fering: @nd some
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other (possibly memory non-intensive) application C is déipplication withMin. Slowdown. With the throttling
condition of Algorithm 1 in place, applications A and B wouddntinuously be throttled up and down in successive
intervals without theFostimated Un fairness ever dropping below the specifiéén fairness Threshold. This is
because, in the intervals when either is detected talbe,;,.,, Fstimated Un fairness will be high because of
application C’s small slowdown. By comparing the slowdowhapplications A and B before throttling is performed
overall throughput is improved by avoiding excessive thirgg which would not improve the systemBstimated

Un fairness.

Third, we observe that there are situations where an apjicauffers slowdown that is incurred as a result of

throttling from previous intervals and not due to intereanterference. To address this, we detect such cases. We

Algorithm 3 Dynamic Request Throttling - General Form
if Estimated Unfairness > Unfairness Threshold AND Appsiow slowdown/Appinierfering slowdown >
Un fairness Threshold then
if Appsiow's €XCESS cycles due to interference frefop;,icr fering > APPsiow's Total ExcessCyclesT hrottling; then
Throttle down application that causes most interfereQe(,, e, rering) for application with largestiowdown
end if
Throttle up application with the largestowdown (Appsiow)
ResetSuccessive Fairness Achieved Intervals
ResetIntervals To Wait To Throttle Up for Appinter fering-

/I Preventing bank service denial
if Appinter fering throttled lower thanSwitch:,, AND causes greater thafnter ferencet,, amount of Appsie.,’s total
interferencehen
Temporarily stop prioritizingAppinter fering due to row hits in memory controller
end if
if APDRowHitNotPrioritized NAS NOt DECMPD nter fering fOr SwitchBackyy, intervalsthen
Allow it to be prioritized in memaory controller based on rdwffer hit status of its requests
end if

for all applications exceppp;,icr fering ANAAPPsiow dO
if Intervals To Wait To Throttle Up = thresholdl then
throttle up
Reset/ntervals To Wait To Throttle Up for this app.
else
Incrementintervals To Wait To Throttle Up for this app.
end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then
Throttle up application with the smallestowdown
ResetSuccessive Fairness Achieved Intervals
else
IncrementSuccessive Fairness Achieved Intervals
end if
end if

14



restrict throttling down ofAdpp;,ter fering 10 Cases where the slowdown thétp,;,.., is suffering is mainly caused by
inter-core interference and is not a resultdp,;.., having been throttled down in previous intervals. If theess
cycles thatdpp,;.., suffers due to not being able to acquire MSHR entries is graéhain the excess cycles caused for
it by Appinter fering, We do not throttle dowdpp;, ey rering @S this would resultin a loss of throughput. In these cases
the detected unfairness is resolved by throttlingdyp.;.., and reducing its slowdown by allowing it to acquire more
MSHR entries.

Fourth, cores that are neither the core with the largestdbow (App,..) NOFr the core generating the most inter-
ference Appinter rering) fOr the core with the largest slowdown are throttled up gvéresholdl intervals. This is a
performance optimization that allows cores to be aggress§ithey are not the main contributors to the unfairness in
the system.

Preventing Bank Service Denial due to FR-FCFS Memory Schedimng: First ready-first come first serve (FR-
FCFS) [34] is a commonly used memory scheduling policy whighuse in our baseline system. This algorithm
prioritizes requests that hit in the DRAM bank row buffersepwall other requests. The FR-FCFS policy has the
potential to starve an application with low row-buffer Itibain the presence of an application with high row-buffer
locality (as discussed in prior work [31, 28, 29, 30]). Evehen the interfering application is throttled down, the
potential for continued DRAM bank interference exists WREFCFS memory scheduling is used, due to the greedy
row-hit-first nature of the scheduling algorithm: a thretttdown application with high row-buffer locality can deny
service to another application continuously. To overcohig tve supplement FST with a heuristic that prevents this
denial of service. Once an application has already beettlguaown lower tharbwitch,, %, if FST detects that this
throttled application is generating greater tharter ferences, % Of Appsiow's total interference, it will temporarily
stop prioritizing the interfering application based on rbuffer hit status in the memory controller. We refer to this
application asApp rowHit Not Prioritized- T ADP Row Hit Not Prioritized N@S NOt been the most interfering application for
Switch Backg, number of intervals, its prioritization over other apptioas based on row-buffer hit status will be re-
allowed in the memory controller. This is done because ifgpliaation with high row-buffer locality is not allowed
to take advantage of row buffer hits for a long time, its parfance will suffef®
3.6. Hardware Cost and Implementation Details

Table 1 shows the breakdown of FST's required storage. Thaédtorage cost required by our implementation of
FST is 11.24KB which is only 0.55% the size of the L2 cache@eised. FST does not require any structure or logic

that is on the critical path since all updates to interfeestracking structures can be made periodically at relbtive

5We do this so that we can have minimal changes to the most coigrused scheduling algorithm. FST can be combined withrdirens of memory
scheduling, which is part of future research and out of tlepe®f this paper.
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large intervals to eliminate any timing constraints (seeti®a 5.5).

Figure 5 shows the shared CMP memory system we model foraiatuof FST including additional structures
for tracking interference added to the baseline memoryesysthown in Figure 2. The two boxes on the right of the
figure contain interference tracking structures and casni@nd the shaded bit positions in the L2 cache lines and
MSHR entries on the left are additions to these structurggired by FST.

3.7. Lightweight FST

In this section, we describe an alternative FST implememtahat requires less hardware cost and is more scal-
able in terms of hardware requirements to a larger numbep@sc In this alternative implementation, we do not
keep track of how much interference is caused by each apiplictor any other application which requirég® Ex-
cessCyclesounters (where N is the number of applications), as desdrib the previous subsection. Instead, we
propose maintaining two counters for each cor@®ne counter tracks the total numberkfcessCyclethat the ap-
plication executing on coregenerated foany otherconcurrently-executing application. We refer to this ceuras
ExcessCyclesGenerated;. The other counter tracks the total numbeEaicessCyclethatany otherconcurrently-
executing application creates for the application on covie refer to this counter aBxcessCyclesSuf fered;. This
requires a total 02N 16-bit counters to be maintained and allows for a more stakxdiution with larger numbers of
cores: the number of required counters is linear insteadiaficatic in the number of cores.

For the lightweight FST implementation to work with the ctens described above, we modify Algorithm 3 as
follows. With lightweight FST, the core executing the apption that has the largest slowdowtpp,;,,, is still
throttled up when throttling is triggered. However, as oggub to throttling down the core executing the applica-
tion which causes the most interference #9700 (Appinter fering) iN Algorithm 3), we throttle down the core that
is executing the application which is generating the mastrfarence for any other concurrently-executing applica-
tion since Appinter fering 1S NOt known due to the reduced number of counters. This ictine with the highest
EzcessCyclesGenerated; counter in a given interval. We evaluate the performanceuofightweight FST in Sec-

tion 5.7.

4. Methodology

Processor Model:We use an in-house cycle-accurate x86 CMP simulator for eaiuation. We faithfully model
all port contention, queuing effects, bank conflicts, artteotnajor DDR3 DRAM system constraints in the memory
subsystem. Table 2 shows the baseline configuration of eaetand the shared resource configuration for the 2 and
4-core CMP systems we use.

Workloads: We use the SPEC CPU 2000/2006 benchmarks for our evaludiach benchmark was compiled
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Cost for N cores | CostforN=4 |
FExcessCycles counters N x N x 16 bits/counter 256 bits
s 2048 entriesx N x 24,576 bits
Interference pollution filter per core (1 pollution bit + ogs N) bit processor id)/entry
Inter feringCoreld per MSHR entry 32 entries/corg N x 2 interference sources (log2 N) bits/entry 512 bits
Inter ferencePerCore bit-vector (3 interference sources + 1 main copy)N x N x 1 bit 64 bits
Shadow row-buffer address register N x # of DRAM banks (B)x 32 bits/address 1024 bits
Successive Fairness Achieved Intervals counter
Intervals To Wait To Throttle Up counter per core (2 x N +1) x 16 hits/counter 144 bits
Inst Count Each Interval per core
Core id per tag store entry in K MB L2 cache 16384 blocks/Megabytg K x (logz N) bit/block 65,536 bits

Total hardware costfor N-core system

Sum of the above

92108 =11.24 KB

Percentage area overhead

Sum (KB)x 100/ (K x 1024)

(as fraction of the baseline K MB L2 cache)

11.24KB/2048KB
=0.55%

Table 1. Hardware cost of FST on a 4-core CMP system
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Figure 5. Changes made to the memory system

using ICC (Intel C Compiler) or IFORT (Intel Fortran Compilevith the -O3 option. We ran each benchmark with
the reference input set for 200 million x86 instructionses&td by Pinpoints [33] as a representative portion for the

2-core experiments. Due to long simulation times, 4-congeexnents were done with 50 million instructions per

benchmark.

We classify benchmarks &éghly memory-intensive/with medium memory intensityfinéensivefor our analyses
and workload selection. We refer to a benchmark as highly amgrimtensive if its L2 Cache Misses per 1K In-
structions (MPKI) is greater than ten. If the MPKI value iggter than one but less than ten, we say the benchmark

has medium memory-intensity. If the MPKI value is less thae,ove refer to it as non-intensive. This classifica-
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Out of order processor, 15 stages,
Decode/retire up to 4 instructions
Issue/execute up to 8 micro instructions
256-entry reorder buffer

Fetch up to 2 branches; 4K-entry BTB
64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line
On-chip Caches || Shared unified L2: 1MB (2MB for 4-core), 8-way (16-way for dre), 16-bank, 15-cycle (20-cycle for 4-core), 1 port, 6#ielsize
On-chip, FR-FCFS scheduling policy [34]
128-entry MSHR and memory request buffer
667MHz bus cycle, DDR3 1333MHz [27]
8B-wide data bus

DRAM and Bus || Latency: 15-15-15ns R P-t RCD-CL)

8 DRAM banks, 16KB row buffer per bank
Round-trip L2 miss latency:

Row-buffer hit: 36ns, conflict: 66ns

Execution Core

Front End

DRAM Controller

Table 2. Baseline system configuration

tion is based on measurements made when each benchmarkmaleme on the 2-core system. Table 3 shows the

characteristics of the benchmarks that appear in the eealweorkloads when run on the 2-core system.

[ Benchmark]| Type| IPC|MPKI [| Benchmark]| Type| IPC|[MPKI |

art FPOO0| 0.10| 90.89 milc FPO06| 0.30| 29.33
soplex FPO06| 0.28| 21.24|| leslie3d FPO6| 0.41| 20.88
Ibm FPO6| 0.45| 20.16|| bwaves FPO06| 0.46| 18.71
GemsFDTD|| FPO06|0.46| 15.63 lucas FPO00| 0.61| 10.61
astar INTO6 | 0.37| 10.19|| omnetpp || INTO6|0.36( 10.11
mgrid FP00| 0.52 6.5 gcc INTO6 | 0.45| 6.26

zeusmp FP06| 0.82| 4.69|| cactusADM|| FP06|0.60| 4.51
bzip2 INTO6 | 1.14| 2.61|| xalancbmk||INT06|0.71| 1.68
h264ref || INTO6 |1.46] 1.28 vortex INTOO|1.01] 1.24

parser INTOO | 1.24] 0.91 apsi FP0OO| 1.81| 0.85
ammp FPOO| 1.8| 0.75]|| perlbench [[INTO6|1.49| 0.68
mesa FP00| 1.82| 0.61|| gromacs FP06| 1.06| 0.29
namd FP06| 2.25| 0.18 crafty INTOO | 1.82 0.1

calculix FP0O6|2.28| 0.05 gamess FP06|2.32| 0.04
povray FP06| 1.88| 0.02
Table 3. Characteristics of 29 SPEC 2000/2006 benchmarks: |  PC and MPKI (L2 cache Misses Per 1K Instructions)

Workload SelectionWe used 18 two-application and 10 four-application muftgrammed workloads for our 2-
core and 4-core evaluations respectively. The 2-core wardd were chosen such that at least one of the benchmarks
is highly memory intensive. For this purpose we used eidrefrom SPEC2000 olbom from SPEC2006. For the
second benchmark of each 2-core workload, applicationsffeireint memory intensity were used in order to cover a
wide range of different combinations. Of the 18 benchmadmalzined with eitheart or lbm, seven benchmarks have
high memory intensity, six have medium intensity, and fiveehlow memory intensity. The ten 4-core workloads
were randomly selected with the condition that the evatliaterkloads each include at least one benchmark with
high memory intensity and at least one benchmark with mediohigh memory intensity.

FST parameters used in evaluation:Table 4 shows the values we use in our evaluation unlessisitterwise.

There are eight aggressiveness levels used for the recatestfreach application: 2%, 3%, 4%, 5%, 10%, 25%,
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50% and 100%. These levels denote the scaling of the MSHRaquut the request rate in terms of percentage.
For example, when FST throttles an application to 5% of italtcequest rate on a system with 128 MSHRs, two
parameters are adjusted. First, the application is givethabota of the total number of available MSHRs (in this
case, 6 MSHRs). Second, the application’s memory requesteiMSHRSs are issued to access the L2 cache at 5%

of the maximum possible frequency (i.e., once every 20 gycle

Fairness |Successive Fairness|Intervals Wait|Interval
Threshold| Achieved Intervals |To Throttle Up| Length ||Switchip,|Inter ferenceip, |SwitchBackip,
Threshold 5% 70% 3intervals
14 4 2 25Kinsts

Table 4. FST parameters

Metrics: To measure CMP system performance, we Hsemonic mean of Speedups (Hspeedi#B], and
Weighted Speedup (Wspeed{g5]. These metrics are commonly used in measuring muitg@am performance
in computer architecture [8]. In order to demonstrate e@nimprovements, we repasnfairness(see Section 3.1),
as defined in [11, 29], anblaximum Slowdowrwhich is the maximum individual slowdown that any applicatin
a workload experiences. Thiaximum Slowdowmetric provides understanding about at most how much anyeof t
applications in a given workload is slowed down due to slitpdhmemory system resources [21]. Sirdepeedup
provides a balanced measure between fairness and systamghiput as shown in previous work [25], we use it as our
primary evaluation metric. In the metric definitions belaW:is the number of cores in the CMP systeh®,C'*°"¢ is
the IPC measured when an application runs alone on one ctire @MP system (other cores are idle), didoCshered

is the IPC measured when an application runs on one core wathiéx applications are running on the other cores.

N-1 shared
N IPC& are
Hspeedup = w———————, Wspeedup = Z T pralone
- IPCZngone =0 IPCZ-
1

=0

5. Experimental Evaluation

We evaluate our proposed techniques on both 2-core (Segtigrand 4-core systems (all other sections). We
compare FST to four other systems in our evaluations: 1) alin@ssystem with no fairness techniques employed in
the shared memory system, using LRU cache replacement attdCHS memory scheduling [34], both of which have
been shown to be unfair [20, 31, 28]. We refer to this basalgi¢oFairness2) a system with only fair cache capacity
management using the virtual private caches technique ¢aft¢drairCache 3) a system with a network fair queuing
(NFQ) fair memory scheduler [31] combined with fair cach@aeity management [32], callddFQ+FairCache 4)

a system with a parallelism-aware batch scheduling (PAR{BiBmemory scheduler [30] combined with fair cache

capacity management [32], callBdR-BS+FairCache
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5.1. 2-core System Results

Figure 6 shows system performance and unfairness averagieg Qeometric mean) across 18 workloads evaluated
on the 2-core system. Figure 7 shows the Hspeedup perforntdri€®T and other fairness techniques normalized
to that of a system without any fairness technique for each®fl8 evaluated 2-core workloads. FST provides the
highest system performance (in terms of Hspeedup) and gteib&irness among all evaluated techniques. We make

several key observations:
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Figure 6. Average performance of FST on the 2-core system
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Figure 7. Hspeedup of 18 2-core workloads normalized to no fa irness control

1. Fair caching’s unfairness reduction comes at the costasfje degradation in system performance. Also average
maximum slowdown which indicates the highest slowdown giplieation in a workload experiences due to sharing
of memory system resources is increased slightly. Theseptremomena occur because fair caching changes the
memory access patterns of applications. Since the memaegsascheduler is unfair, the fairness benefits of the fair
cache itself are reverted by the memory scheduler.

2. NFQ+FairCache together reduces system unfairness B¢a€ompared tdNoFairnessand reduces maximum
slowdown by 10.9%. However, this degrades Wspeedup (by2dR2.3he combination of PAR-BS and fair caching
improves both system performance and fairness compardtetodmbination of NFQ and a fair cache. The main
reason is that PAR-BS preserves both DRAM bank paralleliaoh raw-buffer locality of each thread better than
NFQ, as shown in previous work [30]. Compared to the basaliie no fairness control, employing PAR-BS and a
fair cache reduces unfairness and maximum slowdown by 428%%6 and improves Hspeedup by 11.5%. However,

this improvement comes at the expense of a large (7.8%) Vspesdegradation.
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NFQ+FairCache and PAR-BS+FairCache both significantlyalig system throughput (Wspeedup) compared to
employing no fairness mechanisms. This is due to two realotisof which lead to the delaying of memory non-
intensive applications (Recall that prioritizing memonrintensive applications is better for system throughpu
30]). First, the fairness mechanisms that are employedatghain each resource interact negatively with each ¢gther
leading to one mechanism (e.g. fair caching) increasingpthaesure on the other (fair memory scheduling). As a
result, even though fair caching might benefit system thinpug by giving more resources to a memory non-intensive
application, increased misses of the memory-intensivdiagijon due to fair caching causes more congestion in the
memory system, leading to both the memory-intensive andimi@msive applications to be delayed. Second, even
though the combination of a fair cache and a fair memory otletr can prioritize a memory non-intensive appli-
cation’s requests, this prioritization can be temporariie Qeprioritized memory-intensive application can still fi
the shared MSHRs with its requests, thereby denying theimensive application entry into the memory system.
Hence, the non-intensive application stalls because ii@zanject enough requests into the memory system. As a re-
sult, the memory non-intensive application’s performadces not improve while the memory-intensive application’s

performance degrades (due to fair caching), resulting stesy throughput degradation.

3. FST reduces system unfairness and maximum slowdown By#82.3% while also improving Hspeedup by
20% and degrades Wspeedup by 1.8% comparddoteairness Unlike other fairness mechanisms, FST improves
both system performance and fairness, without large degiadto Wspeedup. This is due to two major reasons.
First, FST provides a coordinated approach in which botrctehe and the memory controller receive less frequent
requests from the applications causing unfairness. Thisaes the starvation of the applications that are unfairly
slowed down as well as interference of requests in the mersygstem, leading to better system performance for
almost all applications. Second, because FST M8BIR quotado limit requests injected by memory-intensive
applications that cause unfairness, these memory-inveagiplications do not deny other applications’ entry it® t
memory system. As such, unlike other fairness techniquatsdt not consider fairness in memory system buffers
(e.g., MSHRs), FST ensures that unfairly slowed-down apfibbns are prioritized in the entire memory system,

including all the buffers, caches, and schedulers.

Table 5 summarizes our results for the 2-core evaluatiomsnpared to the previous technique that provides the
highest system throughput (i.MoFairnes$, FST provides a significantly better balance between sy&é@ness and
performance. Compared to the previous technique that geswthe best fairnesBAR-BS+FairCachg FST improves
both system performance and fairness. We conclude that F&/dps the best system fairness as well as the best

balance between system fairness and performance.
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UnfairnesgMaximum SlowdowfHspeedupNspeedup
FSTA over No Fairness Mechanigm -46.1% -32.3% 20% -1.8%
FSTA over Fair Cache -31.3% -32.6% 30.2% 16.1%
FSTA over NFQ + Fair Cache -22.8% -24.1%  19.7% 11.9%
FSTA over PAR-BS + Fair Cachg¢ -8.2% -10.4% 7.5% 6.4%

Table 5. Summary of results on the 2-core system

5.2. 4-core System Results

5.2.1. Overall Performance Figure 8 shows unfairness and system performance averageskahe ten evaluated
4-core workloads (results in all sections that follow aralaated on the same system and same set of benchmarks).
FST provides the best fairness (in terms of both smallegtitméss and smallest maximum slowdown) and Hspeedup
among all evaluated techniquésyhile providing Wspeedup that is within 3.5% that of the bastvious technique.
Overall, FST reduces unfairness and maximum slowdown b$94411% and increases system performance by
30.4% (Hspeedup) and 6.9% (Wspeedup) comparéibteairness Compared to NFQ, the previous technique with
the highest system throughput (Wspeedup), FST reducesnaga and max slowdown by 22%/16.1% and increases
Hspeedup by 4.2%. FST’s large performance improvement islyndue to the large reduction in unfairness.
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Figure 8. Average performance of FST on the 4-core system

Note that the overall trends in the 4-core system are sirtol#nose in the 2-core system except that previous fair-
ness mechanisms do not significantly improve fairness irthere system. As explained in detail in Section 5.2.2,
this happens because previous fairness mechanisms igaaniin-intensive applications in individual resources re
gardless of whether or not those applications are actuaitygoslowed down.

Figure 9 shows the harmonic speedup performance of FST dad fatirness technigues normalized to that of a
system without any fairness technique for each of the teklvads. Figure 10 shows the system unfairness of all the

techniques for each of the ten workloads. We make two majoclagions. First, FST improves system performance

7In this subsection we also include data points for NFQ aloweRAR-BS alone with no FairCache to show how the uncoordihabmbination of fairness
techniques at different shared resources can result iradatjion of both performance and fairness compared to whigrooe is employed.
8Similarly, FST also reduces the coefficient of variation géternative unfairness metric [41], by 45%.

9Since relative slowdowns of different applications are timgortant to improving unfairness and performance usiSd Fhighly accuratd e cess esti-
mations are not necessary for such improvements. Howewefingd that with the mechanisms proposed in this paper theécapioin which causes the most
interference for the most-slowed-down application is oerage identified correctly in 70% of the intervals.
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(both Hspeedup and Wspeedup) and fairness compared tanesaicontrol for all workloads. Second, FST provides
the highest Hspeedup compared to the previous techniquetié@thighest average system performance (NFQ) on
seven of the ten workloads, and provides the best fairnespaed to the previous technique with the best system

fairness (PAR-BS) on seven of the ten workloads.
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Figure 9. Normalized speedup of 10 4-core workloads
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Figure 10. Unfairness of 10 4-core workloads

5.2.2. Case StudyTo provide more insight into the performance and fairneggovements of FST, we analyze one
4-core workload in detail. This workload is a mix of appliceis of different levels of memory intensityArt and
leslie are both highly memaory-intensive, whigamessandgromacsare non-intensive (as shown in Table 3). When
these applications are run simultaneously on a 4-core rsysiith no fairness control, the two memory-intensive
applications (especiallgrt) generate a large amount of memory traffistt’'s large number of memory requests to
the shared resources unfairly slows down all other thredicgimns, whileart does not slow down significantly.
Figures 11 and 12 show individual benchmark performancesgatem performance/fairness, respectively (note that

Figure 11 shows speedup over alone run which is the inverselividual slowdown, defined in Section 3.1). Several
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observations are in order:
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Figure 12. Case study: system behavior

1. NFQ+FairCache significantly degrades system performagcl2.3% (Hspeedup) and 7.1% (Wspeedup) com-
pared to no fairness control. This combination slows dovenrttemory-intensive applications too much, resulting in
a 16.7% increase in maximum slowdown compared to employinfainness technigue. The largest slowdowns are
experienced by the memory-intensiae andlesliebecause they both get less cache space due to FairCacheeand a
deprioritized in DRAM due to NFQ prioritizing infrequentgaests (with earlier virtual finish times) frogamess
andgromacs On the other hand, when NFQ alone is employed, the memonrimensive applications’ performance
is slightly improved by prioritizing them in DRAM at small dections to the performance of the memory-intensive
applications. NFQ alone improves system performance b%&71% (HS/WS) and reduces unfairness/maximum
slowdown by 12.7%/10.9%. However, NFQ does not addresgénémce caused in the shared cache so its gains are
limited.

2. With PAR-BS+FairCache and PAR-BS8t is heavily deprioritized with unfair improved performarfoe the less
memory intensive applications resulting in improved ollesgstem throughput (Wspeedup). These two techniques
are an example of where unfair treatment of applicationswoekload may increase system throughput at the cost
of large increases to unfairness and maximum slowdown $%/B89% and 40.4%/31.6% for PAR-BS+FairCache and

PAR-BS respectively) and degradation of average systermataund time (Hspeedup) compared to not using any

24



fairness technique. These techniques overly deprioritieenory intensive applications (specificalyt) because
they do not explicitly detect when such applications caimedowns for others. They simply prioritize non-intensive
applications all the time regardless of whether or not threyaatually slowed down in the memory system. In contrast,
our approach explicitly detects when memory-intensivdiapfions are causing unfairness in the system. If they are
not causing unfairness, FST does not deprioritize them. Aesalt, their performance is not unnecessarily reduced.
This effect is observed by examining the most memory-initenapplication’s art's) performance with FST. With

FST,art has higher performance than with any of the other fairnedsigues.

3. FST increases system performance by 17.5%/11.6% (HSWHE) reducing unfairness/maximum slowdown
by 21.4%/19.5% compared to no fairness control. In this vea#t, the memory-intensivart andleslie cause sig-
nificant interference to each other in all shared resourodstagromacsin the shared cache. Unlike other fairness
techniques, FST dynamically tracks the interference aaditifairness in the system in a fine-grained manner. When
the memory-intensive applications are causing interfegeand increasing unfairness, FST throttles the offendoty
application(s). In contrast, when the applications ara@mtetfering significantly with each other, FST allows them t
freely share resources in order to maximize each applicatiperformance. The fine-grained dynamic detection of
unfairness and enforcement of fairness mechanisms only Wey are needed allow FST to achieve higher system

performance (Hspeedup) and a better balance betweendaiamel performance than other techniques.

To provide insight into the dynamic behavior of FST, FiguBeshows the percentage of time each core spends at
each throttling level. FST significantly throttles dowrt andleslie much of the time (but not always) to reduce the
inter-core interference they generate for each other aadetss memory intensive applications. As a resrit,and
leslie spend almost 25%/30% of their execution time at 10% or legheif full aggressiveness. Also, a lot of the
time art can prevent bank service to the continuous accesdesl@to the same bank. FST detects this and disallows
art's requests to be prioritized based on row-buffer hits fotor7df all intervals, preventingrt from causing bank
service denial, as described in Section 3.5. Notedhizdpends approximately 55% of its time at throttling level 100
which shows that FST detects times when art is not causigg leterference and does not penalize it. Figure 13
also shows that FST detects interference caused by nototibyt also other applicationgeslie, gromacs and even
gamessre detected to generate inter-core interference for @pplications in certain execution intervals. As such,
FST dynamically adapts its fairness control decisions &itierference patterns of applications rather than simply
prioritizing memory non-intensive applications. Themefounlike other fairness techniques, FST does not overly

deprioritizeart in the memory system.

We conclude that FST provides a higher-performance apprt@attaining fairness than coarsely tracking the
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Figure 13. Case Study: application throttling levels

memory-intensity of applications and deprioritizing mesgntensive applications without dynamic knowledge of
interference and unfairness. FST achieves this by tracknfgirness in the system and making fairness/throttling

decisions based on that tracking in a finer-grained manner.

5.3. Effect of Throttling Mechanisms

As described in Section 3.2, FST uses the combination of techanisms to throttle an application up/down and
increase/decrease its request rate from the shared resouty Applying anMSHR quotato each application, 2)
Adjusting the frequency at which requests in the MSHRs anedd to access L2. Section 3.5 explains how to prevent
bank service denial from FR-FCFS memory scheduling witl8i.H-igure 14 shows the effect of each of the different
throttling mechanisms, the effect of bank service denial/pntion (BSDP), and FST on the 4-core system. Several
observations are in order:

1. Employing BSDP always improves performance regardlésseothrottling mechanism that is used. BSDP’s
improvements are due to the resolution of a problem we refeast theover-throttling problem. As explained in
Section 3.5 memory intensive applications that also hagh hiw-buffer locality can cause significant interference
even if they are throttled when the memory controller use$BAFCFS scheduling algorithm. When this occurs
(using the terminology of Section 3.5), FST detects an djrahrottled down application to b&ppiyier fering and
continuously throttles it down further because the estmainfairness remains high adgp,;,., stays the same. We
call this over-throttlingof Appi,ier fering. BSDP resolves this issue by eliminating the cause of bankcgedenial
due to FR-FCFS scheduling.

In Figure 14, the fourth and fifth bars from the left in each gnalph show the importance of BSDP. Without
BSDP, enabling MSHR quotas destroys fairness (sub-figaleand (b)) and degrades system performance in terms
of harmonic mean of speedups (sub-figure (c)) as a result fafiruneatment of memory-intensive applications in
some workloads. The large increase in unfairness is mainégytd workloads that contain the applicatiari. Art
is a highly memory-intensive workload with high row-bufiecality. As such, as we described in Section 3.5 it can

cause bank service denial for concurrently executing apfiins even when it is throttled down. Additionaléyt’'s
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performance is very sensitive to the number of MSHR entrigs aisposal. As a result, it can getver-throttledas
described above when MSHR quotas are employed for thrgitliine fourth and fifth bars from the left in Figure 14
show that while the over-throttling problem that exists floe workloads includingirt does not result in an average
loss of system throughput (Wspeedup, sub-figure (d)) aalbsise workloads, it does have a large impact on system
fairness and average system turnaround time (as shown bfjgaubs (a)-(c)). We conclude that BSDP is necessary
for significant improvements to system fairness when MSH&agiare employed.

2. Without BSDP, the combination of MSHR quota and frequethegttling perform worse than using MSHR
guota alone. The reason for this is theer-throttling of memory-intensive benchmarks in the absence of BSDP.
When both throttling mechanisms are employed, the negalfeet ofover-throttlingdominates average performance
in our evaluated workloads. This leads to the combinatiotheftwo throttling mechanisms performing worse than
MSHR alone in the absence of BSDP.

3. UsingMSHR quotass more effective than using frequency throttling alone wiBSDP is employed. Using
MSHR quotagogether with BSDP achieves 97% of the performance impraverand 95% of the fairness improve-
ment provided by FST. However, as Table 6 shows that difteaxpplications are affected differently by small adjust-
ments to their MSHR quota values. Applications with high roeyrlevel-parallelism such dbm are sensitive to the
number of MSHRs they have available to them: small changésio MSHR quota results in large slowdowns. On
the other hand, applications suchsphinx3andmilc do not make use of many MSHRs even when running alone as
they do not have high degrees of memory-level parallelisor.seach memory-intensive applications with low MLP,
applying MSHR quotas as the throttling mechanism reducesdfuest rates only at the smallest throttling levels
(MSHR quotas of 1 or 2). Therefore, using the second thngttthechanism (frequency throttling) that reduces the
frequency at which requests are sent to L2 provides betterdiained control of request injection rate.

We conclude that using all mechanisms of FST is better thah #aottling mechanism alone in terms of both

fairness and performance.
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Figure 14. Effects of different throttling mechanisms for F ST
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# of MSHRs 1 2 3 5 6 12 | 32 | 64 | 128

sphinx3 (IPC)[| 0.13| 0.23] 0.28| 0.29| 0.29| 0.30{ 0.30| 0.30{ 0.30
milc (IPC) 0.10| 0.22] 0.36| 0.38( 0.39| 0.40| 0.40| 0.40{ 0.40
Ibm (IPC) 0.04| 0.10| 0.22| 0.26{ 0.30| 0.39| 0.45| 0.46| 0.48

Table 6. Sensitivity of alone performance (IPC) to # of MSHRs

5.4. Evaluation of System Software Support

Enforcing Thread Priorities: As explained in Section 3.4, FST can be configured by systdiwa® to assign
different weights to different threads. As an example of HE®T enforces thread weights, we ran four identical
copies of thaGemsFDTDbenchmark on a 4-core system and assigned thesad weight®f 1, 1, 4 and 8 (recall that
a higher-weight thread is one the system software wantsaatore). Figure 15 shows that with no fairness technique
each copy ofsemsFDTDhas an almost identical slowdown as the baseline does npbsithread weights and treats
the applications identically in the shared memory systerawéler, FST prioritizes the applications proportionally
to their weights, favoring applications with higher weightthe shared memory system. FST also slows down the
two copies with the same weight by the same amount. We coacthat FST approximately enforces thread weights,
thereby easing the development of system software whialraift expects a CMP to respect thread weights in the

shared memory system.
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Figure 15. Enforcing thread weights with FST

Enforcing an Alternative Fairness Objective (Maximum Tolerable Slowdown): Section 3.4 explained how
FST can be configured to achievaraximum slowdown thresholts determined by system software, that dictates
the maximum tolerable slowdown of any individual applioatexecuting concurrently on the CMP. Figure 16 shows
an example of how FST enforces this fairness objective whandpplications are run together on a 4-core system.
The figure shows each application’s individual slowdownadunrfdifferent experiments where each experiment uses a
different maximum slowdown threshold (ranging from 2 to 8kat by the system software. As tighter goals are set by
the system software, FST throttles the applications adeglylto achieve (close to) the desired maximum slowdown.
The fairness objective is met until the maximum slowdoweshiold becomes too tight and is violated (fiogrid and

parsel), which happens at threshold value 2. We conclude that F8Eforce different system-software-determined
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fairness objectives.
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Figure 16. Enforcing maximum slowdown with FST

In Algorithm 3, throttling is triggered when estimated systunfairnesds greater than a system-software-specified
threshold. Figure 17 shows average system performanceasmégs when using a system-software-specifiecti-
mum slowdowtmarget (Triggering Condition 2 from Section 3.4) compare@& ST with anunfairnesgdarget (Trigger-
ing Condition 1 from Section 3.4, which is the system-sofenarget we use in all other experiments in this paper).
We conclude that similar system performance and fairnessflie can be gained using either system software goal:
maximum tolerable slowdown or maximum tolerable unfaimes

We evaluate sensitivity to the unfairness threshold whicpart of the system software support in Section 5.8

separately.
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Figure 17. Comparing overall results with different system level QoS targets

5.5. Effects of Implementation Constraints

Shared resources may be located far away from each otheearhip. In order to eliminate timing constraints on
the sending of updates to theter ference PerCore bit-vector from the shared resources, such updates can the ma
periodically. EveryUpdateThreshold cycles, all shared resources send their local copidstfr ference PerCore
to update the main copy at the L2. Once the updates are afpligee main copy by taking the union of all bit-
vectors, FST checks the main copy biter ference PerCore. If the Inter ferencePerCore bit of a core is set,

FST increments th&zcessCycles counter corresponding to the core by figdateT hreshold value.
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Figure 18 shows the effect of periodic updates and serigitigi chosen period lengths on the performance and
fairness improvements of FST. The figure shows that even wptfates occurring once every 1000 cycles, system
performance is almost identical and fairness improvemargswithin 2.5% of FST with updates made every cycle.
This is because memory system interference generallytsegukexcess cycles in the order of hundreds of cycles.
As such, our mechanism can tolerate updates happeningdjpaliy without incurring big losses in fidelity. We
conclude that using periodic updates (even when made &ivedyalong periods) eliminates any timing constraints on
the sending of updates to theter ference PerCore bit-vector and does not significantly effect the performaand

fairness improvements of FST.
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Figure 18. Effect of periodic updates on FST'’s performance a nd unfairness

5.6. Effects of Different Sources of Interference

Figure 19 shows the effect of taking into account interfeeefrom each of the interference sources we discuss
in Section 3.3. The figure shows that from the different ifiemce sources discussed in Section 3.3, FST's perfor-
mance is mostly sensitive to whether or not DRAM bank interfiee is included in the estimations. Without taking
into account DRAM bank interference, FST only improves perfance by 5.1% (Hspeedup) and reduces unfair-
ness by 13.8% respectively. On the other hand, if we have dniflementation that does not take into account
cache or DRAM row-buffer interference (i.e., one that takdse account only DRAM bank interference), we can
achieve 97% of the total performance improvements of FST®#9d of its total unfairness reduction. As we have
observed in Section 3.6, a significant portion of the har@weaquired to implement FST is required for accounting for
cache interference and DRAM row-buffer interference. Agsult, this gives opportunity for a much less expensive

implementation of FST based only on DRAM bank interference.

5.7. Evaluation of Lightweight FST

Figure 20 compares the performance of the lightweight FSpléementation described in Section 3.7 to that of
the baseline and the original full-blown FST we have beetuatimg so far. The figure shows that the lightweight

implementation that requireésN cycles for trackingexcessCyclemformation provides 98% of the system perfor-
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Figure 19. Sensitivity of FST to taking into account differe nt interference sources

mance and 95% of the system fairness benefits of the origBiah#hich requiresV? counters. We conclude that this

lightweight version of FST can be a more scalable yet higlfioperance option to consider for systems with a larger

number of cores.
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Figure 20. Comparing overall results of original and lightw eight FST

5.8. Sensitivity to Unfairness Threshold

Figure 21 shows how FST's average fairness and performdrareges with different unfairness thresholds on our
evaluated 4-core workloads. Lowering thafairness thresholdet by the system-software continuously improves
fairness and performance until the unfairness threshotdies too small. With a very small unfairness threshold
(1.05), FST becomes 1) very aggressive at throttling dowe<to reach the very tight unfairness goal, 2) too sen-
sitive to inaccuracies in slowdown estimation and theeetoggers throttling of sources unnecessarily. As a result
both system performance and fairness slightly degrade.h®mther hand, as the threshold increases, unfairness in
the system also increases (because throttling is empl@gsdaten) and performance decreases beyond some point
(because memory hog applications start causing starvagiothers, leading to lower system utilization). Overall,
the unfairness threshold provides a knob to the system aoffwusing which the system software can determine the
fairness-performance balance in the system. We find anmefss threshold of 1.4 provides the best fairness and

performance for our 4-core workloads.
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Figure 21. Sensitivity of FST to unfairness threshold

5.9. Effect of Multiple Memory Controllers

Figure 22 shows the effect of using FST on a system with two amgroontrollers. Such a system has higher
available off-chip bandwidth and therefore less interecmterference and less unfairness than a system with one
controller. Yet, even in such a system, FST provides sigaifigmprovements in system fairness and performance

compared to the baseline and combination of state-of-thiieness mechanisms at the different resources.
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Figure 22. Effect of FST on a system with two memory controlle rs

5.10. Evaluation of Using Profile Information

Figure 23 shows the effect of using profile information to@oat for slowdown due to throttling as described
in Section 3.3.4. The figure shows system performance (Hgpeshown on the first bar) and system unfairness
(shown on the second bar) of a system using W8th profile informationnormalized to that of a system using
FSTwithout profile informationOn average, using such profile information improves sygierformance by 4% and
leaves system unfairness unchanged across the 4-coreoadsklHowever, such profile information is not completely
accurate in accounting for slowdowns due to throttling irirakrvals since the factors described in Section 3.3.4 are
obtained by comparing performance of complete runs of epghication at different throttling levels. Due to the
inaccuracies that exist, the use of this information resmlincreased system unfairness in two of the workloads.

6. Related Work
To our knowledge, this paper provides the first comprehenaivd flexible hardware-based solution that enables

system-software-specified fairness goals to be achieviiekiantire shared memory system of a multi-core processor,
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Figure 23. Effect of using profile information for throttlin g related slowdown

without requiring fairness mechanisms to be implementdiidually in each shared resource.

Prior work in providing fairness in different shared resoes of CMP systems focused on fair caching [17, 20,
18, 32], fair memory scheduling [31, 29, 30, 22], and fairamip interconnects [24, 5, 13]. We have already pro-
vided extensive qualitative and quantitative comparisitsving that our mechanism significantly improves system
fairness and performance compared to systems employirgpthbination of state-of-the-art fair cache capacity man-
agement [32] and fair memory scheduling [31, 30].

Bitirgen et al. [2] propose implementing an artificial ndunatwork that learns each application’s performance
response to different resource allocations. Their teammi&parches the space of different resource allocatione@mo
co-executing applications to find a partitioning in the gltarache and memory controller that improves performance.
In contrast to FST, this mechanism requires that resouasedb fairness/partitioning techniques are already imple-
mented in each individual resource. In addition, it reggiirelatively more complex, black-box implementation of
artificial neural networks in hardware.

Herdrich et al. [14] observe that the interference caused lbyar-priority application on a higher-priority appli-
cation can be reduced using existing clock modulation tieglas in CMP systems. However, their proposal does not
consider or provide fairness to equal-priority applicatoZhang et al. [41] propose a software-based technique tha
uses clock modulation and prefetcher on/off control predidby existing hardware platforms to improve fairness in
current multi-core systems compared to other softwarenigcies. Neither of these prior works propose an online al-
gorithm that dynamically controls clock modulation to amhe fairness. In contrast, FST provides: 1) hardware-based
architectural mechanisms that continuously monitor shanemory system unfairness at run-time and 2) an online
algorithm that, upon detection of unfairness, throttleeiifering applications using two new hardware-based timgt

mechanisms (instead of coarse-grained clock modulatmréduce the interfering applications’ request rates.

Jahre and Natvig [19] observe that adjusting the number aifahle MSHRs can control the total miss bandwidth

available to each thread running on a CMP. However, thisrpriark does not show how this observation can be
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used by an online algorithm to dynamically achieve a weflrl fairness or performance goal. In contrast to this
prior work, our work 1) provides architectural support fahéeving different well-defined system-software fairness
objectives while also improving system performance, 2wshthat using complementary throttling mechanisms and
preventing bank service denial due to FR-FCFS, as done by pr8Vides better fairness/performance than simply
adjusting the number of available MSHRs (see Section 5)3h8ws that FST's approach of throttling sources based
on unfairness feedback provides better system fairnegsfpeance than implementing different fairness mechagism

in each individual shared resource.

Zhuravlev et. al. [42] take a pure software-based schegudipproach to the resource contention problem for
multi-core memory systems. This paper proposes detectighapairs of applications are likely to interfere less
with each other and scheduling them to execute on coreshhat as small a number of resources as possible. Tang
et. al. [37] show the negative impacts of memory subsystesnuree sharing on real datacenter applications. They
also show that pure software-based intelligent threadste-mappings can reduce the amount of memory subsystem
interference different applications suffer and improveitlperformance. The mechanisms we propose in this work
are orthogonal to those proposed by Zhuravlev et. al. ang &n al. as we address the problem of inter-core
memory system interference in a finer-grained fashion uaihgrdware/software cooperative approach: First, the mix
of applications to be scheduled may be such that whatevewa@ schedule is chosen high inter-core interference
will exist among the applications sharing multiple memoygtem resources. In such cases, pure software-based
scheduling approaches can not be as effective. However,ce8Pprovide performance and fairness improvements
since it throttles applications fine-grained manner. Sdcewmen if inter-core interference can be somewhat reduced
using better scheduling, after a number of applicationgteeen scheduled to share some memory system resources,
an FST like approach can further improve system fairnesspartbrmance by dynamically controlling memory

system interference at a finer-grained level.

Prior work on SMT processors (e.g., [39, 26, 25, 3]) propasett policies to improve performance and/or fairness
in such processors. These techniques are not applicabile fodblem we address, since they mainly address sharing
of execution pipeline resources and not the shared mematersy Eyerman and Eeckhout [9] propose a technique
to estimate the execution times of simultaneously runnimgads had they been run alone. This work estimates
interference in the execution resources and does not ddalmémory system interference in a detailed manner. As
such, our proposed memory interference/slowdown estimand source throttling techniques are orthogonal to this

prior work.

Finally, several prior papers investigated how to handidgich requests in shared resources [36, 7, 6]. Even though
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we do not consider prefetching in this paper, our recent vi8fklescribes how our FST proposal can be adapted to

systems that employ prefetching.
7. Conclusion

We proposed a low-cost architectural technique, FairnesSaurce Throttling (FST), that allows system-software
fairness policies to be achieved in CMPs by enabling fairiaiyeof the entire memory system. FST eliminates the
need for and complexity of multiple complicated, specidizand possibly contradictory fairness techniques for dif
ferent shared resources. The key idea of our solution istttegaynamic feedback information about the slowdowns
experienced by different applications in hardware at iiometand, based on this feedback, collectively adjust the
memory request rates of sources (i.e., cores) to balandeaippns’ slowdowns. Our solution ensures that fairness
decisions in the entire memory system are made in tandemeisignificantly improving both system performance
and fairness compared to the state-of-ther@sburce-basethirness techniques implemented independently for dif-
ferent shared resources. We have also shown FST is conflguratsystem software, allowing it to enforce thread
priorities and achieve different fairness objectives. Wadatude that FST provides a promising low-cost substrate
that can not only improve the performance and fairness afréutmulti-core systems but also ease the task of future

multi-core system software in managing shared on-chipvare resources.
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