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Abstract
Chip multiprocessor (CMP) systems share a large portion of the memory subsystem among multiple cores. Recent proposals

have addressed high-performance and fair management of these shared resources; however, none of them take into account
prefetch requests. Without prefetching, significant performance is lost, which is why existing systems prefetch. By not taking into
account prefetch requests, all recent shared-resource management proposals often significantly degrade both performance and
fairness, rather than improve them in the presence of prefetching.

This paper is the first to propose mechanisms that both managethe shared resources of a multi-core chip to obtain high-
performance and fairness, and also exploit prefetching. Weapply our proposed mechanisms to two resource-based management
techniques for memory scheduling and one source-throttling-based management technique for the entire shared memory system.
We show that our mechanisms improve the performance of a 4-core system that uses network fair queuing, parallelism-aware
batch scheduling, and fairness via source throttling by 11.0%, 10.9%, and 11.3% respectively, while also significantlyimproving
fairness.

1. Introduction

Chip-multiprocessor (CMP) systems commonly share a large portion of the memory subsystem between different

cores. Main memory and shared caches are two examples of shared resources. Memory requests from different

applications executing on different cores of a CMP can interfere with and delay each other in the shared memory

subsystem. Compared to a scenario where each application runs alone on the CMP, this inter-core interference causes

the execution of simultaneously running applications to slow down. However, sharing memory system resources

affects the execution of different applications very differently because the resource management algorithms employed

in the shared resources are unfair [29]. As a result some applications are unfairly slowed down significantly more than

others.

Figure 1 shows two examples of vastly differing effects of resource-sharing on simultaneously executing applica-

tions on a 2-core CMP system (Section 4 describes our experimental setup). Whenbzip2andart run simultaneously

with equal priorities, the inter-core interference causedby the sharing of memory system resources slows downbzip2

by 5.2Xcompared to when it is run alone whileart slows down by only1.15X. In order to achieve system level fair-

ness or quality of service (QoS) objectives, the system software (operating system or virtual machine monitor) expects

proportional progress ofequal-priority applications when running simultaneously. Clearly, disparities in slowdown

like those shown in Figure 1 due to sharing of the memory system resources between simultaneously running equal-

priority applications is unacceptable since it would make priority-based thread scheduling policies ineffective [10,

29].
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Figure 1. Disparity in slowdowns due to unfairness in the mem ory system

To mitigate this problem, previous papers [17, 20, 31, 15, 29, 32, 18, 30] on fair memory system design for

multi-core systems mainly focused on partitioning a particular shared resource (cache space, cache bandwidth, or

memory bandwidth) to provide fairness in the use of that shared resource. However, none of these prior papers

directly target afair memory system design that provides fair sharing ofall resources together. We define a memory

system design asfair if the slowdowns of equal-priority applications running simultaneously on the cores sharing that

memory system are the same (this definition has been used in several prior papers [35, 25, 3, 11, 29]). As shown in

previous research [2], employing separate uncoordinated fairness techniques together does not necessarily result in

a fair memory system design. This is because fairness mechanisms in different resources can contradict each other.

Our goal in this paper is to develop a low-cost architectural technique that allows system software fairness policies to

be achieved in CMPs by enabling fair sharing of theentire memory system, without requiring multiple complicated,

specialized, and possibly contradictory fairness techniques for different shared resources.

Basic Idea: To achieve this goal, we propose a fundamentally new mechanism that 1) gathers dynamic feedback

information about the unfairness in the system and 2) uses this information to dynamically adapt the rate at which the

different cores inject requests into the shared memory subsystem such that system-level fairness objectives are met.

To calculate unfairness at run-time, a slowdown value is estimated for each application in hardware. Slowdown is

defined asTshared/Talone, whereTshared is the number of cycles it takes to run simultaneously with other applications

andTalone is the number of cycles it would have taken the application torun alone. Unfairness is calculated as the

ratio of the largest slowdown to the smallest slowdown of thesimultaneously running applications. If the unfairness in

the system becomes larger than theunfairness thresholdset by the system software, the core that interferes most with

the core experiencing the largest slowdown is throttled down. This means that the rate at which the most interfering

core injects memory requests into the system is reduced, in order to reduce the inter-core interference it generates. If

the system software’sfairness goalis met, all cores are allowed to throttle up to improve systemthroughput while

system unfairness is continuously monitored. The fairnessmetric/goal, unfairness threshold, and throttling rates are

all configurable by system software. This configurable hardware substrate enables the system software to achieve
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different QoS/fairness policies: it can determine the balance between fairness and system throughput, dictate different

fairness objectives, and enforce thread priorities in the entire memory system.

Summary of Evaluation: We evaluate our technique on both 2-core and 4-core CMP systems in comparison to

three previously-proposed state-of-the-art shared hardware resource management mechanisms. Experimental results

across ten multi-programmed workloads on a 4-core CMP show that our proposed technique improves average system

performance by 25.6%/14.5% while reducing system unfairness by 44.4%/36.2% compared respectively to a system

with no fairness techniques employed and a system with state-of-the-art fairness mechanisms implemented for both

shared cache capacity [32] and the shared memory controller[30].

Contributions: We make the following contributions:

1. We introduce a low-cost, hardware-based and system-software-configurable mechanism to achieve fairness goals

specified by system software in theentireshared multi-core memory system.

2. We introduce a mechanism that collects dynamic feedback on the unfairness of the system and adjusts request

rates of the different cores to achieve the desired fairness/performance balance. By performingsource-basedfair-

ness control, this work eliminates the need for complicatedindividual resource-basedfairness mechanisms that are

implemented independently in each resource and that require coordination.

3. We qualitatively and quantitatively compare our proposed technique to multiple prior works in fair shared cache

partitioning and fair memory scheduling. We find that our proposal, while simpler, provides significantly higher

system performance and better system fairness compared to previous proposals.

2. Background and Motivation

We first present brief background on how we model the shared memory system of CMPs. We then motivate our

approach to providing fairness in the entire shared memory system by showing how employing resource-based fairness

techniques does not necessarily provide better overall fairness.

2.1. Shared CMP Memory Systems

In this paper, we assume that the last-level (L2) cache and off-chip DRAM bandwidth are shared by multiple

cores on a chip as in many commercial CMPs [38, 40, 16, 1]. Eachcore has its own L1 cache. Miss Status Hold-

ing/information Registers (MSHRs) [23] keep track of all requests to the shared L2 cache until they are serviced.

When an L1 cache miss occurs, an access request to the L2 cacheis created by allocating an MSHR entry. Once the

request is serviced by the L2 cache or DRAM system as a result of a cache hit or miss respectively, the corresponding

MSHR entry is freed and used for a new request. Figure 2 gives ahigh level view of such a shared memory system.

The number of MSHR entries for a core indicates the total number of outstanding requests allowed to the L2 cache
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and DRAM system. Therefore increasing/decreasing the number of MSHR entries for a core can increase/decrease

the rate at which memory requests from the core are injected into the shared memory system.

2.2. Motivation

MSHR allocator

L1 Cache

. . .

Core 0

Core N−1

...

L2 Cache

Memory
Controller

Figure 2. Shared CMP Memory System

Most prior papers on providing fairness in shared resourcesfocus on

partitioning of a single shared resource. However, by partitioninga single

shared resource, the demands on other shared resources may change such

that neither system fairness nor system performance is improved. In the

following example, we describe how constraining the rate atwhich an ap-

plication’s memory requests are injected to the shared resources can result

in higher fairness and system performance than employing fair partition-

ing of a single resource.

Figure 3 shows the memory-related stall time1 of applications A and

B either running alone on one core of a 2-core CMP (parts (a)-(d)), or, running concurrently with equal priority

on different cores of a 2-core CMP (parts ((e)-(j)). For simplicity of explanation, we assume an application stalls

when there is an outstanding memory request, focus on requests going to the same cache set and memory bank, and

assume all shown accesses to the shared cache occur before any replacement happens. Application A is very memory-

intensive, while application B is much less memory-intensive as can be seen by the different memory-related stall

times they experience when running alone (Figures 3 (a)-(d)). As prior work has observed [30], when a memory-

intensive application with already high memory-related stall time interferes with a less memory-intensive application

with much smaller memory-related stall time, delaying the former improves system fairness because the additional

delay causes a smaller slowdown for the memory-intensive application than for the non-intensive one. Doing so can

also improve throughput by allowing the less memory-intensive application to quickly return to its compute-intensive

portion while the memory-intensive application continueswaiting on memory.

Figures 3 (e) and (f) show the initial L2 cache state, access order and memory-related stall time when no fairness

mechanism is employed in any of the shared resources. Application A’s large number of memory requests arrive at the

L2 cache earlier, and as a result, the small number of memory requests from application B are significantly delayed.

This causes large unfairness because the compute-intensive application B is slowed down significantly more than the

already-slow memory-intensive application A. Figures 3 (g) and (h) show that employing a fair cache increases the

1Stall-time is the amount of execution time in which the application cannot retire instructions. Memory-related stall time caused by a memory request consists
of: 1) time to access the L2 cache, and if the access is a miss 2)time to wait for the required DRAM bank to become available, and finally 3) time to access
DRAM.
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(d) Application B’s
alone memory−related stall time

fair source throttling (FST)
(i) Initial state for

alone memory−related stall time
(b) Application A’s

Access order:
B1, B2, B3

Access order:
A1, A2, A3, A4, A5, A6, A7

application B running alone
(c) Initial State for
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A’s stall time
B’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

Memory access
Wait for busy bank
Cache hit

B’s stall time
A’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

Access order:
A1, A2, A3, A4, A5, A6, A7, B1, B2, B3

B’s stall time
A’s stall time

A1
B1
B2
B3
A2
A3
A4
A5
A6
A7

A1, B1, B2, B3, A2, A3, A4, A5, A6, A7
Access order: Throttled requests

A1

A3
A4
A5
A6
A7

A2

A’s stall time

B1
B2
B3

B’s stall time

(e) Initial state for no fairness control (f) Memory−related stall time of no fairness control

(g) Initial state for fair cache (h) Memory−related time of fair cache

(j) Memory−related stall time of FST

Shared L2 cache

B2 B3 B4B1

Shared L2 cache

application A running alone
(a) Initial State for

A1, A2, A3, A4, A5, A6, A7, B1, B2, B3
Access order:

A7 B2

Shared L2 cache

B1 B2

Shared L2 cache

A7 B2

Shared L2 cache

A1 A2 A4 A7

A1 A2

A2A1

A1 A2

Figure 3. Access pattern and memory-related stall time of re quests when application A running alone (a, b), application B running alone

(c, d), A and B running concurrently with no fairness control (e, f), fair cache (g, h), and fair source throttling (i, j)

fairnessin utilization of the cacheby allocatingan equal number of waysfrom the accessed set to the two equal-

priority applications. This increases application A’s cache misses compared to the baseline with no fairness control.

Even though application B gets more hits as a result of fair sharing of the cache, its memory-related stall time does not

reduce due to increased interference in the main memory system from application A’s increased misses. Application

B’s memory requests are still delayed behind the large number of memory requests from application A. Application

A’s memory-related stall time increases slightly due to itsincreased cache misses, however, since application A already

had a large memory-related stall time, this slight increasedoes not incur a large slowdown for it. As a result, fairness

improves slightly, but system throughput degrades becausethe system spends more time stalling rather than computing

compared to no fair caching.

In Figure 3, if the unfair slowdown of application B due to application A is detected at run-time, system fair-

ness can be improved by limiting A’s memory requests and reducing the frequency at which they are issued into the

shared memory system. This is shown in the access order and memory-related stall times of Figures 3 (i) and (j).

If the frequency at which application A’s memory requests are injected into the shared memory system is reduced,

the memory access pattern can change as shown in Figure 3 (i).We use the termthrottled requeststo refer to those

requests from application A that are delayed when accessingthe shared L2 cache due to A’s reduced injection rate. As

a result of the late arrival of thesethrottled requests, application B’s memory-related stall time significantly reduces
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(because A’s requests no longer interfere with B’s) while application A’s stall time increases slightly. Overall, this

ultimately improves both system fairness and throughput compared to both no fairness control and just a fair cache.

Fairness improves because the memory-intensive application is delayed such that the less intensive application’s mem-

ory related-stall time does not increase significantly compared to when running alone. Delaying the memory-intensive

application does not slow it down too much compared to when running alone, because even when running alone it

has high memory-related stall time. System throughput improves because the total amount of time spent computing

rather than stalling in the entire system increases, as can be seen by comparing the stall times in Figures 3 (f) and (h)

to Figure 3 (j).

The key insight is thatboth system fairness and throughput can improve by detecting high system unfairness at

run-time and dynamically limiting the number of or delayingthe issuing of memory requests from the aggressive

applications. In essence, we propose a new approach that performssource-basedfairness in the entire memory

system rather thanindividual resource-basedfairness that implements complex and possibly contradictory fairness

mechanisms in each resource. Sources (i.e., cores) can collectively achieve fairness by throttling themselves based

on dynamic unfairness feedback, eliminating the need for implementing possibly contradictory/conflicting fairness

mechanisms and complicated coordination techniques between them.

3. Fairness via Source Throttling

To enable fairness in the entire memory system, we proposeFairness via Source Throttling(FST). The proposed

mechanism consists of two major components: 1)runtime unfairness evaluationand 2)dynamic request throttling.

3.1. Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an estimate of the unfairness in the CMP memory system. We

use the following definitions in determining unfairness:

1) We define a memory system design asfair if the slowdowns of equal-priority applications running simultaneously

on the cores of a CMP are the same, similarly to previous works[35, 25, 3, 11, 29].

2) We define slowdown asTshared/Talone whereTshared is the number of cycles it takes to run simultaneously with

other applications andTalone is the number of cycles it would have taken the application torun alone on the same

system.

The main challenge in the design of the runtime unfairness evaluation component is obtaining information about

the number of cycles it would have taken an application to runalone, while it is running simultaneously with other

applications. To do so, we estimate the number ofextra cyclesit takes an application to execute due to inter-core

interference in the shared memory system, calledTexcess. Using this estimate,Talone is calculated asTshared−Texcess.
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The following equations show howIndividual Slowdown (IS)of each application andUnfairnessof the system are

calculated.

ISi =
T shared

i

T alone

i

, Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

Section 3.3 explains in detail how the runtime unfairness evaluation component is implemented and in particular

how Texcess is estimated. Assuming for now that this component is in place, we next explain how the information it

provides is used to determine how each application is throttled to achieve fairness in the entire shared memory system.

3.2. Dynamic Request Throttling

This component is responsible for dynamically adjusting the rate at which each core/application2 makes requests

to the shared resources. This is done on an interval basis as shown in Figure 4.

Time

Slowdown
Estimation

.  .  . .  .  .

Interval 1 Interval 2 Interval 3

Determine request rates
for Interval 2 using feedback
from Interval 1

Calculate Unfairness &{

Figure 4. FST’s interval-based estimation and throttling

An interval ends when each core has executed a certain numberof instructions from the beginning of that interval.

During each interval (for exampleInterval 1 in Figure 4) the runtime unfairness evaluation component gathers feed-

back used to estimate the slowdown of each application. At the beginning of the next interval (Interval 2), the feedback

information obtained during the prior interval is used to make a decision about the request rates of each application

for that interval. More precisely, slowdown values estimated duringInterval 1are used to estimate unfairness for the

system. That unfairness value is used to determine the request rates for the different applications for the duration of

Interval 2. During the next interval (Interval 2), those request rates are applied, and unfairness evaluation is performed

again. The algorithm used to adjust the request rate of each application using the unfairness estimate calculated in the

prior interval is shown in Algorithm 1. To ease explanations, Algorithm 1 is simplified for dual-core configurations.

Section 3.5 presents the more general algorithm for more than two cores.

We define multiple possible levels of aggressiveness for therequest rate of each application. The dynamic request

throttling component makes a decision to increase/decrease or keep constant the request rate of each application at

interval boundaries. We refer to increasing/decreasing the request rate of an application as throttling the application

up/down.

2Since each core runs a separate application, we use the wordscore and application interchangeably in this paper.
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Algorithm 1 Dynamic Request Throttling
if Estimated Unfairness > Unfairness Threshold then

Throttle down application with the smallestslowdown
Throttle up application with the largestslowdown
ResetSuccessive Fairness Achieved Intervals

else
if Successive Fairness Achieved Intervals = threshold then

Throttle all applications up
ResetSuccessive Fairness Achieved Intervals

else
IncrementSuccessive Fairness Achieved Intervals

end if
end if

At the end of each interval, the algorithm compares the unfairness estimated in the previous interval to the unfairness

threshold that is defined by system software. If the fairnessgoal has not been met in the previous interval, the

algorithm reduces the request rate of the application with the smallest individual slowdown value and increases the

request rate of the application with the largest individualslowdown value. This reduces the number and frequency of

memory requests generated for and inserted into the memory resources by the application with the smallest estimated

slowdown, thereby reducing its interference with other cores. The increase in the request rate of the application with

the highest slowdown allows it to be more aggressive in exploiting Memory-Level Parallelism (MLP) [12, 4] and

as a result reduces its slowdown. If the fairness goal is met for a predetermined number of intervals (tracked by

a Successive Fairness Achieved Intervals counter in Algorithm 1), the dynamic request throttling component

attempts to increase system throughput by increasing the request rates of all applications by one level. This is done

because our proposed mechanism strives to increase throughput while maintaining the fairness goals set by the system

software. Increasing the request rate of all applications might result in unfairness. However, the unfairness evaluation

during the interval in which this happens detects this occurrence and dynamically adjusts the requests rates again.

Throttling Mechanisms: Our mechanism increases/decreases the request rate of eachapplication in multiple ways:

1) Adjusting the number of outstanding misses an application can have at any given time. To do so, anMSHR quota,

which determines the maximum number of MSHR entries an application can use at any given time, is enforced for

each application. Reducing MSHR entries for an applicationreduces the pressure caused by that application’s requests

on all shared memory system resources by limiting the numberof concurrent requests from that application contending

for service from the shared resources. This reduces other simultaneously running applications’ memory-related stall

times and gives them the opportunity to speed up. 2) Adjusting the frequency at which requests in the MSHRs are

issued to access L2. Reducing this frequency for an application reduces the number of memory requests per unit time
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from that application that contend for shared resources. This allows memory requests from other applications to be

prioritized in accessing shared resources even if the application that is throttled down does not have high MLP to begin

with and is not sensitive to reduction in the number of its MSHRs. We refer to this throttling technique asfrequency

throttling. We use both of these mechanisms to reduce the interference caused by the application that experiences the

smallest slowdown on the application that experiences the largest slowdown.

3.3. Unfairness Evaluation Component Design

Tshared is simply the number of cycles it takes to execute an application in an interval. EstimatingTalone is

more difficult, and FST achieves this by estimatingTexcess for each core, which is the number of cycles the core’s

execution time is lengthened due to interference from othercores in the shared memory system. To estimateTexcess,

the unfairness evaluation component keeps track of inter-core interference each core incurs.

Tracking Inter-Core Interference: We consider three sources of inter-core interference: 1) cache, 2) DRAM bus

and bank conflict, and 3) DRAM row-buffer.3 Our mechanism uses anInterferencePerCore bit-vector whose

purpose is to indicate whether or not a core is delayed due to inter-core interference. In order to track interference

from each source separately, a copy ofInterferencePerCore is maintained for each interference source. A main

copy which is updated by taking the union of the differentInterferencePerCore vectors is eventually used to

updateTexcess as described below. When FST detects inter-core interference for corei at any shared resource, it

sets biti of the InterferencePerCore bit-vector, indicating that the core was delayed due to interference. At the

same time, it also sets anInterferingCoreId field in the correspondinginterfered-withmemory request’s MSHR

entry. This field indicates which core interfered with this request and is later used to reset the corresponding bit in

the InterferencePerCore vector when theinterfered-withrequest is scheduled/serviced. We explain this process

in more detail for each resource below in Sections 3.3.1-3.3.3. If a memory request has not been interfered with, its

InterferingCoreId will be the same as the core id of the core it was generated by.

Updating Texcess: FST stores the number ofextra cyclesit takes to execute a given interval’s instructions due to

inter-core interference (Texcess) in anExcessCycles counter per core. Every cycle, if theInterferencePerCore

bit of a core is set, FST increments the corresponding core’sExcessCycles counter. Section 3.3.5 shows how this

can be done less frequently.

Algorithm 2 shows how FST calculatesExcessCycles for a given corei. The following subsections explain

in detail how each source of inter-core interference is taken into account to setInterferencePerCore. Table 1

3On-chip interconnect can also experience inter-core interference [5]. Feedback information similar to that obtainedfor the three sources of inter-core
interference we account for can be collected for the on-chipinterconnect. That information can be incorporated into our technique seamlessly, which we leave as
part of future work.
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summarizes the required storage needed to implement the mechanisms explained here.

Algorithm 2 Estimation ofTexcess for corei
Every cycle

if inter-core cache or DRAM bus or DRAM bank or
DRAM row-buffer interference then

setInterferencePerCore bit i
setInterferingCoreId in delayed memory request

end if
if InterferencePerCore bit i is setthen

IncrementExcessCycles for corei
end if

Every L2 cache fill for a miss due to interference OR
Every time a memory request which is a row-buffer miss due to interference is serviced

resetInterferencePerCore bit of corei
InterferingCoreId of corei = i (no interference)

Every time a memory request is scheduled to DRAM
if Corei has no requests waiting on any bank which is busy servicing another corej (j != i) then

resetInterferencePerCore bit of corei
end if

3.3.1. Cache InterferenceIn order to estimate inter-core cache interference, for each corei we need to track the

last-level cache misses that are caused by any other corej. To do so, FST uses a pollution filter for each core to

approximate such misses. The pollution filter is a bit-vector that is indexed with the lower order bits of the accessed

cache line’s address.4 In the bit-vector, a set entry indicates that a cache line belonging to the corresponding core was

evicted by another core’s request. When a request from corej replaces one of corei’s cache lines, corei’s filter is

accessed using the evicted line’s address, and the corresponding bit is set. When a memory request from corei misses

the cache, its filter is accessed with the missing address. Ifthe corresponding bit is set, the filter predicts that this

line was previously evicted due to inter-core interferenceand the bit in the filter is reset. When such a prediction is

made, once the interfered-with request is scheduled to DRAMtheInterferencePerCore bit corresponding to core

i is set to indicate that corei is experiencing extra execution cycles due to cache interference. Once the interfered-with

memory request is finished receiving service from the memorysystem and the corresponding cache line is filled, core

i’s filter is accessed and the bit is reset and so is corei’s InterferencePerCore bit.

3.3.2. DRAM Bus and Bank Conflict Interference Inter-core DRAM bank conflict interference occurs when core

i’s memory request cannot access the bank it maps to, because arequest from some other corej is being serviced by

that memory bank. DRAM bus conflict interference occurs whena core cannot use the DRAM because another core

is using the DRAM bus. These situations are easily detectable at the memory controller, as described in [29]. When

4We empirically determined the pollution filter for each coreto have 2K-entries in our evaluations.
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such interference is detected, theInterferencePerCore bit corresponding to corei is set to indicate that corei is

stalling due to a DRAM bus or bank conflict. This bit is reset when no request from corei is being prevented access

to DRAM by the other cores’ requests.

3.3.3. DRAM Row-Buffer Interference This type of interference occurs when a potential row-buffer hit of core i

when running alone is converted to a row-buffer miss/conflict due to a memory request of some corej when running

together with others. This can happen if a request from corej closes a DRAM row opened by a prior request from core

i that is also accessed by a subsequent request from corei. To track such interference, aShadow Row-buffer Address

Register (SRAR)is maintained for each core for each bank. Whenever corei’s memory request accesses some rowR,

the SRAR of corei is updated to rowR. Accesses to the same bank from some other corej do not affect the SRAR

of corei. As such, at any point in time, corei’s SRAR will contain the last row accessed by the last memory request

serviced from that core in that bank. When corei’s memory request suffers a row-buffer miss because anothercorej’s

row is open in the row-buffer of the accessed bank, the SRAR ofcorei is consulted. If the SRAR indicates a row-buffer

hit would have happened, then inter-core row-buffer interference is detected. As a result, theInterferencePerCore

bit corresponding to corei is set. Once the memory request is serviced, the corresponding InterferencePerCore

bit is reset.5

3.3.4. Slowdown Due to Throttling When an application is throttled, it experiences some slowdown due to the

throttling. This slowdown is different from the inter-coreinterference induced slowdown estimated by the mechanisms

of Sections 3.3.1 to 3.3.3. Throttling-induced slowdown isa function of an application’s sensitivity to 1) the number

of MSHRs that are available to it, 2) the frequency of injecting requests into the shared resources. Using profiling,

we determine for each throttling levell, the corresponding slowdown (due to throttling)f of an applicationA. At

runtime, any estimated slowdown for applicationA when running at throttling levell is multiplied byf . We find that

accounting for this slowdown using this profiling information improves the system performance gained by FST by 4%

on 4-core systems, as we evaluate in Section 5.10.

Slowdown due to throttling can also be tracked by maintaining a counter for the number of cycles each application

A stalls because it can not obtain an MSHR entry because of its limited MSHR quota. We separately keep track of

the number of such cycles and refer to them as those excess cycles which are due to throttling (as opposed to excess

cycles due to interference from other applications). We discuss how this information is used later in a more general

form of dynamic request throttling presented in Section 3.5, Algorithm 3.

5To be more precise, the bit is reset “row buffer hit latency” cycles before the memory request is serviced. The memory request would have taken at least
“row buffer hit latency” cycles had there been no interference.
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3.3.5. Implementation DetailsSection 3.3 describes how separate copies ofInterferencePerCore are main-

tained per interference source. The main copy which is used by FST for updatingTexcess is physically located close

by the L2 cache. Note that shared resources may be located faraway from each other on the chip. Any possible

timing constraints on the sending of updates to theInterferencePerCore bit-vector from the shared resources can

be eliminated by making these updates periodically. In Section 5.5 we show that making updates as infrequently as

even once every 1000 cycles provides negligible loss of fidelity compared to ideally making updates every cycle.

3.4. System Software Support

Different Fairness Objectives:System-level fairness objectives and policies are generally decided by the system

software (the operating system or virtual machine monitor). FST is intended as architectural support for enforcing

such policies in shared memory system resources. Thefairness goalto be achieved by FST can be configured by

system software. To achieve this, we enable the system software to determine the nature of the condition that triggers

Algorithm 1. In the explanations of Section 3.2, thetriggering conditionis

Triggering Condition (1) : “Estimated Unfairness > Unfairness Threshold”

System software might want to enforce different triggeringconditions depending on the system’s fairness/QoS re-

quirements. To enable this capability, FST implements different triggering conditions from which the system software

can choose. For example, the fairness goal the system software wants to achieve could be to keep the maximum

slowdown of any application below a threshold value. To enforce such a goal, the system software can configure FST

such that the triggering condition in Algorithm 1 is changedto

Triggering Condition (2) : “Estimated Slowdowni > Max. Slowdown Threshold”

Alternatively, per application slowdown thresholds can bespecified. In this case, if any application slows down

beyond its own specified threshold, Algorithm 1 will be triggered.

Thread Weights: So far, we have assumed all threads are of equal importance. FST can be seamlessly adjusted to

distinguish between and provide differentiated services to threads with different priorities. We add the notion ofthread

weightsto FST, which are communicated to it by the system software using special instructions. Higher slowdown

values are more tolerable for less important orlower weightthreads. To incorporate thread weights, FST usesweighted

slowdownvalues calculated as:

WeightedSlowdowni = Measured Slowdowni × Weighti

By scaling the real slowdown of a thread with its weight, a thread with a higher weight appears as if it slowed down

more than it really did, causing it to be favored by FST. Section 5.4 quantitatively evaluates FST with one different

fairness goal and threads with different weights.
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Thread Migration and Context Switches: FST can be seamlessly extended to work in the presence of thread

migration and context switches. When a context switch happens or a thread is migrated, the interference state related

to that thread is cleared. When a thread restarts executing after a context switch or migration, it starts at maximum

throttle. The interference caused by the thread and the interference it suffers are dynamically re-estimated and FST

adapts to the new set of co-executing applications.

3.5. General Dynamic Request Throttling

Scalability to More Cores: When the number of cores is greater than two, a more general form of Algorithm 1

is used. The design of theunfairness evaluationcomponent for the more general form of Algorithm 1 is slightly

different. This component gathers the following extra information for the more general form of dynamic request

throttling presented in Algorithm 3: a) for each corei, FST maintains a set ofN-1 counters, whereN is the number

of simultaneously running applications. We refer to theseN-1 counters that FST uses to keep track of the amount

of the inter-core interference caused by any other corej in the system fori asExcessCyclesij. This information

is used to identify which of the other applications in the system generates the most interference for corei, b) FST

maintains the total inter-core interference an application on corei experiences due to interference from other cores

in a TotalExcessCyclesInterferencei counter per core, and c) as described in the last paragraph ofSection 3.3.4,

those excess cycles that are caused as a result of an application being throttled down are accounted for separately in a

TotalExcessCyclesThrottlingi counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 that uses the extra information described above to make

more accurate throttling decisions in a system with more than two cores. The four most important changes are as

follows:

First, when the algorithm is triggered due to unfair slowdown of corei, FST compares theExcessCyclesij counter

values for all coresj 6= i to determine which other core is interfering most with corei. The core found to be the most

interfering is throttled down. We do this in order to reduce the slowdown of the core with the largest slowdown value,

and improve system fairness.

Second, the first line of the algorithm shows how we change thecondition that triggers throttling. Throttling is

triggered if both the estimated unfairness (Max. Slowdown/Min. Slowdown) and the ratio between the slowdowns

of core with the largest slowdown (Appslow) and the core generating the most interference (Appinterfering) are greater

thanUnfairness Threshold. Doing so helps reduce excessive throttling when two applications significantly inter-

fere with each other and alternate between being identified as Appslow andAppinterfering. Consider the case where

application A and B alternate between beingAppslow (which hasMax. Slowdown) andAppinterfering; and some
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other (possibly memory non-intensive) application C is theapplication withMin. Slowdown. With the throttling

condition of Algorithm 1 in place, applications A and B wouldcontinuously be throttled up and down in successive

intervals without theEstimated Unfairness ever dropping below the specifiedUnfairness Threshold. This is

because, in the intervals when either is detected to beAppslow, Estimated Unfairness will be high because of

application C’s small slowdown. By comparing the slowdownsof applications A and B before throttling is performed

overall throughput is improved by avoiding excessive throttling which would not improve the system’sEstimated

Unfairness.

Third, we observe that there are situations where an application suffers slowdown that is incurred as a result of

throttling from previous intervals and not due to inter-core interference. To address this, we detect such cases. We

Algorithm 3 Dynamic Request Throttling - General Form

if Estimated Unfairness > Unfairness Threshold AND Appslow slowdown/Appinterfering slowdown >
Unfairness Threshold then

if Appslow ’s excess cycles due to interference fromAppinterfering > Appslow ’s TotalExcessCyclesThrottlingi then
Throttle down application that causes most interference (Appinterfering) for application with largestslowdown

end if
Throttle up application with the largestslowdown (Appslow)
ResetSuccessive Fairness Achieved Intervals
ResetIntervals To Wait To Throttle Up for Appinterfering.

// Preventing bank service denial
if Appinterfering throttled lower thanSwitchthr AND causes greater thanInterferencethr amount ofAppslow ’s total
interferencethen

Temporarily stop prioritizingAppinterfering due to row hits in memory controller
end if
if AppRowHitNotPrioritized has not beenAppinterfering for SwitchBackthr intervalsthen

Allow it to be prioritized in memory controller based on row-buffer hit status of its requests
end if

for all applications exceptAppinterfering andAppslow do
if Intervals To Wait To Throttle Up = threshold1 then

throttle up
ResetIntervals To Wait To Throttle Up for this app.

else
IncrementIntervals To Wait To Throttle Up for this app.

end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then

Throttle up application with the smallestslowdown
ResetSuccessive Fairness Achieved Intervals

else
IncrementSuccessive Fairness Achieved Intervals

end if
end if
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restrict throttling down ofAppinterfering to cases where the slowdown thatAppslow is suffering is mainly caused by

inter-core interference and is not a result ofAppslow having been throttled down in previous intervals. If the excess

cycles thatAppslow suffers due to not being able to acquire MSHR entries is greater than the excess cycles caused for

it by Appinterfering, we do not throttle downAppinterfering as this would result in a loss of throughput. In these cases

the detected unfairness is resolved by throttling upAppslow and reducing its slowdown by allowing it to acquire more

MSHR entries.

Fourth, cores that are neither the core with the largest slowdown (Appslow) nor the core generating the most inter-

ference (Appinterfering) for the core with the largest slowdown are throttled up every threshold1 intervals. This is a

performance optimization that allows cores to be aggressive if they are not the main contributors to the unfairness in

the system.

Preventing Bank Service Denial due to FR-FCFS Memory Scheduling: First ready-first come first serve (FR-

FCFS) [34] is a commonly used memory scheduling policy whichwe use in our baseline system. This algorithm

prioritizes requests that hit in the DRAM bank row buffers over all other requests. The FR-FCFS policy has the

potential to starve an application with low row-buffer locality in the presence of an application with high row-buffer

locality (as discussed in prior work [31, 28, 29, 30]). Even when the interfering application is throttled down, the

potential for continued DRAM bank interference exists whenFR-FCFS memory scheduling is used, due to the greedy

row-hit-first nature of the scheduling algorithm: a throttled-down application with high row-buffer locality can deny

service to another application continuously. To overcome this, we supplement FST with a heuristic that prevents this

denial of service. Once an application has already been throttled down lower thanSwitchthr%, if FST detects that this

throttled application is generating greater thanInterferencethr% of Appslow’s total interference, it will temporarily

stop prioritizing the interfering application based on row-buffer hit status in the memory controller. We refer to this

application asAppRowHitNotPrioritized. If AppRowHitNotPrioritized has not been the most interfering application for

SwitchBackthr number of intervals, its prioritization over other applications based on row-buffer hit status will be re-

allowed in the memory controller. This is done because if an application with high row-buffer locality is not allowed

to take advantage of row buffer hits for a long time, its performance will suffer.6

3.6. Hardware Cost and Implementation Details

Table 1 shows the breakdown of FST’s required storage. The total storage cost required by our implementation of

FST is 11.24KB which is only 0.55% the size of the L2 cache being used. FST does not require any structure or logic

that is on the critical path since all updates to interference-tracking structures can be made periodically at relatively

6We do this so that we can have minimal changes to the most commonly used scheduling algorithm. FST can be combined with other forms of memory
scheduling, which is part of future research and out of the scope of this paper.
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large intervals to eliminate any timing constraints (see Section 5.5).

Figure 5 shows the shared CMP memory system we model for evaluation of FST including additional structures

for tracking interference added to the baseline memory system shown in Figure 2. The two boxes on the right of the

figure contain interference tracking structures and counters, and the shaded bit positions in the L2 cache lines and

MSHR entries on the left are additions to these structures required by FST.

3.7. Lightweight FST

In this section, we describe an alternative FST implementation that requires less hardware cost and is more scal-

able in terms of hardware requirements to a larger number of cores. In this alternative implementation, we do not

keep track of how much interference is caused by each application for any other application which requiresN2 Ex-

cessCyclescounters (where N is the number of applications), as described in the previous subsection. Instead, we

propose maintaining two counters for each corei. One counter tracks the total number ofExcessCyclesthat the ap-

plication executing on corei generated forany otherconcurrently-executing application. We refer to this counter as

ExcessCyclesGeneratedi. The other counter tracks the total number ofExcessCyclesthatany otherconcurrently-

executing application creates for the application on corei. We refer to this counter asExcessCyclesSufferedi. This

requires a total of2N 16-bit counters to be maintained and allows for a more scalable solution with larger numbers of

cores: the number of required counters is linear instead of quadratic in the number of cores.

For the lightweight FST implementation to work with the counters described above, we modify Algorithm 3 as

follows. With lightweight FST, the core executing the application that has the largest slowdownAppslow is still

throttled up when throttling is triggered. However, as opposed to throttling down the core executing the applica-

tion which causes the most interference forAppslow (Appinterfering) in Algorithm 3), we throttle down the core that

is executing the application which is generating the most interference for any other concurrently-executing applica-

tion sinceAppinterfering is not known due to the reduced number of counters. This is thecore with the highest

ExcessCyclesGeneratedi counter in a given interval. We evaluate the performance of our lightweight FST in Sec-

tion 5.7.

4. Methodology

Processor Model:We use an in-house cycle-accurate x86 CMP simulator for our evaluation. We faithfully model

all port contention, queuing effects, bank conflicts, and other major DDR3 DRAM system constraints in the memory

subsystem. Table 2 shows the baseline configuration of each core and the shared resource configuration for the 2 and

4-core CMP systems we use.

Workloads: We use the SPEC CPU 2000/2006 benchmarks for our evaluation.Each benchmark was compiled
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Cost for N cores Cost for N = 4

ExcessCycles counters N × N × 16 bits/counter 256 bits
2048 entries× N × 24,576 bitsInterference pollution filter per core

(1 pollution bit + (log2 N) bit processor id)/entry
InterferingCoreId per MSHR entry 32 entries/core× N × 2 interference sources× (log2 N) bits/entry 512 bits

InterferencePerCore bit-vector (3 interference sources + 1 main copy)× N × N × 1 bit 64 bits
Shadow row-buffer address register N × # of DRAM banks (B)× 32 bits/address 1024 bits

Successive Fairness Achieved Intervals counter
Intervals To Wait To Throttle Up counter per core

Inst Count Each Interval per core
(2 × N + 1)× 16 bits/counter 144 bits

Core id per tag store entry in K MB L2 cache 16384 blocks/Megabyte× K × (log2 N) bit/block 65,536 bits

Total hardware cost for N-core system Sum of the above 92108 =11.24 KB
Percentage area overhead 11.24KB/2048KB

(as fraction of the baseline K MB L2 cache)
Sum (KB)× 100 / (K× 1024)

= 0.55%
Table 1. Hardware cost of FST on a 4-core CMP system
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Figure 5. Changes made to the memory system

using ICC (Intel C Compiler) or IFORT (Intel Fortran Compiler) with the -O3 option. We ran each benchmark with

the reference input set for 200 million x86 instructions selected by Pinpoints [33] as a representative portion for the

2-core experiments. Due to long simulation times, 4-core experiments were done with 50 million instructions per

benchmark.

We classify benchmarks ashighly memory-intensive/with medium memory intensity/non-intensivefor our analyses

and workload selection. We refer to a benchmark as highly memory-intensive if its L2 Cache Misses per 1K In-

structions (MPKI) is greater than ten. If the MPKI value is greater than one but less than ten, we say the benchmark

has medium memory-intensity. If the MPKI value is less than one, we refer to it as non-intensive. This classifica-
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Out of order processor, 15 stages,
Decode/retire up to 4 instructionsExecution Core
Issue/execute up to 8 micro instructions
256-entry reorder buffer
Fetch up to 2 branches; 4K-entry BTBFront End
64K-entry Hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip Caches Shared unified L2: 1MB (2MB for 4-core), 8-way (16-way for 4-core), 16-bank, 15-cycle (20-cycle for 4-core), 1 port, 64B line size
On-chip, FR-FCFS scheduling policy [34]

DRAM Controller 128-entry MSHR and memory request buffer
667MHz bus cycle, DDR3 1333MHz [27]
8B-wide data bus

DRAM and Bus Latency: 15-15-15ns (tRP -tRCD-CL)
8 DRAM banks, 16KB row buffer per bank
Round-trip L2 miss latency:
Row-buffer hit: 36ns, conflict: 66ns

Table 2. Baseline system configuration

tion is based on measurements made when each benchmark was run alone on the 2-core system. Table 3 shows the

characteristics of the benchmarks that appear in the evaluated workloads when run on the 2-core system.

Benchmark Type IPC MPKI Benchmark Type IPC MPKI

art FP00 0.10 90.89 milc FP06 0.30 29.33
soplex FP06 0.28 21.24 leslie3d FP06 0.41 20.88
lbm FP06 0.45 20.16 bwaves FP06 0.46 18.71

GemsFDTD FP06 0.46 15.63 lucas FP00 0.61 10.61
astar INT06 0.37 10.19 omnetpp INT06 0.36 10.11
mgrid FP00 0.52 6.5 gcc INT06 0.45 6.26

zeusmp FP06 0.82 4.69 cactusADM FP06 0.60 4.51
bzip2 INT06 1.14 2.61 xalancbmk INT06 0.71 1.68

h264ref INT06 1.46 1.28 vortex INT00 1.01 1.24
parser INT00 1.24 0.91 apsi FP00 1.81 0.85
ammp FP00 1.8 0.75 perlbench INT06 1.49 0.68
mesa FP00 1.82 0.61 gromacs FP06 1.06 0.29
namd FP06 2.25 0.18 crafty INT00 1.82 0.1

calculix FP06 2.28 0.05 gamess FP06 2.32 0.04
povray FP06 1.88 0.02

Table 3. Characteristics of 29 SPEC 2000/2006 benchmarks: I PC and MPKI (L2 cache Misses Per 1K Instructions)

Workload SelectionWe used 18 two-application and 10 four-application multi-programmed workloads for our 2-

core and 4-core evaluations respectively. The 2-core workloads were chosen such that at least one of the benchmarks

is highly memory intensive. For this purpose we used eitherart from SPEC2000 orlbm from SPEC2006. For the

second benchmark of each 2-core workload, applications of different memory intensity were used in order to cover a

wide range of different combinations. Of the 18 benchmarks combined with eitherart or lbm, seven benchmarks have

high memory intensity, six have medium intensity, and five have low memory intensity. The ten 4-core workloads

were randomly selected with the condition that the evaluated workloads each include at least one benchmark with

high memory intensity and at least one benchmark with mediumor high memory intensity.

FST parameters used in evaluation:Table 4 shows the values we use in our evaluation unless stated otherwise.

There are eight aggressiveness levels used for the request rate of each application: 2%, 3%, 4%, 5%, 10%, 25%,

18



50% and 100%. These levels denote the scaling of the MSHR quota and the request rate in terms of percentage.

For example, when FST throttles an application to 5% of its total request rate on a system with 128 MSHRs, two

parameters are adjusted. First, the application is given a 5% quota of the total number of available MSHRs (in this

case, 6 MSHRs). Second, the application’s memory requests in the MSHRs are issued to access the L2 cache at 5%

of the maximum possible frequency (i.e., once every 20 cycles).

Fairness Successive Fairness Intervals Wait Interval

Threshold Achieved Intervals To Throttle Up Length

Threshold

1.4 4 2 25Kinsts

Switchthr Interferencethr SwitchBackthr

5% 70% 3 intervals

Table 4. FST parameters

Metrics: To measure CMP system performance, we useHarmonic mean of Speedups (Hspeedup)[25], and

Weighted Speedup (Wspeedup)[35]. These metrics are commonly used in measuring multi-program performance

in computer architecture [8]. In order to demonstrate fairness improvements, we reportUnfairness(see Section 3.1),

as defined in [11, 29], andMaximum Slowdown, which is the maximum individual slowdown that any application in

a workload experiences. TheMaximum Slowdownmetric provides understanding about at most how much any of the

applications in a given workload is slowed down due to sharing of memory system resources [21]. SinceHspeedup

provides a balanced measure between fairness and system throughput as shown in previous work [25], we use it as our

primary evaluation metric. In the metric definitions below:N is the number of cores in the CMP system,IPCalone is

the IPC measured when an application runs alone on one core inthe CMP system (other cores are idle), andIPCshared

is the IPC measured when an application runs on one core whileother applications are running on the other cores.

Hspeedup =
N

N−1
X

i=0

IPCalone

i

IPCshared

i

, Wspeedup =

N−1
X

i=0

IPCshared

i

IPCalone

i

5. Experimental Evaluation

We evaluate our proposed techniques on both 2-core (Section5.1) and 4-core systems (all other sections). We

compare FST to four other systems in our evaluations: 1) a baseline system with no fairness techniques employed in

the shared memory system, using LRU cache replacement and FR-FCFS memory scheduling [34], both of which have

been shown to be unfair [20, 31, 28]. We refer to this baselineasNoFairness, 2) a system with only fair cache capacity

management using the virtual private caches technique [32], calledFairCache, 3) a system with a network fair queuing

(NFQ) fair memory scheduler [31] combined with fair cache capacity management [32], calledNFQ+FairCache, 4)

a system with a parallelism-aware batch scheduling (PAR-BS) fair memory scheduler [30] combined with fair cache

capacity management [32], calledPAR-BS+FairCache.
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5.1. 2-core System Results

Figure 6 shows system performance and unfairness averaged (using geometric mean) across 18 workloads evaluated

on the 2-core system. Figure 7 shows the Hspeedup performanceof FST and other fairness techniques normalized

to that of a system without any fairness technique for each ofthe 18 evaluated 2-core workloads. FST provides the

highest system performance (in terms of Hspeedup) and the best unfairness among all evaluated techniques. We make

several key observations:
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Figure 6. Average performance of FST on the 2-core system
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1. Fair caching’s unfairness reduction comes at the cost of alarge degradation in system performance. Also average

maximum slowdown which indicates the highest slowdown any application in a workload experiences due to sharing

of memory system resources is increased slightly. These twophenomena occur because fair caching changes the

memory access patterns of applications. Since the memory access scheduler is unfair, the fairness benefits of the fair

cache itself are reverted by the memory scheduler.

2. NFQ+FairCache together reduces system unfairness by 30.2% compared toNoFairnessand reduces maximum

slowdown by 10.9%. However, this degrades Wspeedup (by 12.3%). The combination of PAR-BS and fair caching

improves both system performance and fairness compared to the combination of NFQ and a fair cache. The main

reason is that PAR-BS preserves both DRAM bank parallelism and row-buffer locality of each thread better than

NFQ, as shown in previous work [30]. Compared to the baselinewith no fairness control, employing PAR-BS and a

fair cache reduces unfairness and maximum slowdown by 41.3%/24.5% and improves Hspeedup by 11.5%. However,

this improvement comes at the expense of a large (7.8%) Wspeedup degradation.

20



NFQ+FairCache and PAR-BS+FairCache both significantly degrade system throughput (Wspeedup) compared to

employing no fairness mechanisms. This is due to two reasonsboth of which lead to the delaying of memory non-

intensive applications (Recall that prioritizing memory non-intensive applications is better for system throughput[31,

30]). First, the fairness mechanisms that are employed separately in each resource interact negatively with each other,

leading to one mechanism (e.g. fair caching) increasing thepressure on the other (fair memory scheduling). As a

result, even though fair caching might benefit system throughput by giving more resources to a memory non-intensive

application, increased misses of the memory-intensive application due to fair caching causes more congestion in the

memory system, leading to both the memory-intensive and non-intensive applications to be delayed. Second, even

though the combination of a fair cache and a fair memory controller can prioritize a memory non-intensive appli-

cation’s requests, this prioritization can be temporary. The deprioritized memory-intensive application can still fill

the shared MSHRs with its requests, thereby denying the non-intensive application entry into the memory system.

Hence, the non-intensive application stalls because it cannot inject enough requests into the memory system. As a re-

sult, the memory non-intensive application’s performancedoes not improve while the memory-intensive application’s

performance degrades (due to fair caching), resulting in system throughput degradation.

3. FST reduces system unfairness and maximum slowdown by 46.1%/32.3% while also improving Hspeedup by

20% and degrades Wspeedup by 1.8% compared toNoFairness. Unlike other fairness mechanisms, FST improves

both system performance and fairness, without large degradation to Wspeedup. This is due to two major reasons.

First, FST provides a coordinated approach in which both thecache and the memory controller receive less frequent

requests from the applications causing unfairness. This reduces the starvation of the applications that are unfairly

slowed down as well as interference of requests in the memorysystem, leading to better system performance for

almost all applications. Second, because FST usesMSHR quotasto limit requests injected by memory-intensive

applications that cause unfairness, these memory-intensive applications do not deny other applications’ entry into the

memory system. As such, unlike other fairness techniques that do not consider fairness in memory system buffers

(e.g., MSHRs), FST ensures that unfairly slowed-down applications are prioritized in the entire memory system,

including all the buffers, caches, and schedulers.

Table 5 summarizes our results for the 2-core evaluations. Compared to the previous technique that provides the

highest system throughput (i.e.NoFairness), FST provides a significantly better balance between system fairness and

performance. Compared to the previous technique that provides the best fairness (PAR-BS+FairCache), FST improves

both system performance and fairness. We conclude that FST provides the best system fairness as well as the best

balance between system fairness and performance.

21



UnfairnessMaximum SlowdownHspeedupWspeedup
FST∆ over No Fairness Mechanism -46.1% -32.3% 20% -1.8%

FST∆ over Fair Cache -31.3% -32.6% 30.2% 16.1%
FST∆ over NFQ + Fair Cache -22.8% -24.1% 19.7% 11.9%

FST∆ over PAR-BS + Fair Cache -8.2% -10.4% 7.5% 6.4%
Table 5. Summary of results on the 2-core system

5.2. 4-core System Results

5.2.1. Overall PerformanceFigure 8 shows unfairness and system performance averaged across the ten evaluated

4-core workloads (results in all sections that follow are evaluated on the same system and same set of benchmarks).

FST provides the best fairness (in terms of both smallest unfairness and smallest maximum slowdown) and Hspeedup

among all evaluated techniques,7 while providing Wspeedup that is within 3.5% that of the bestprevious technique.

Overall, FST reduces unfairness and maximum slowdown by 44.4%/41%8 and increases system performance by

30.4% (Hspeedup) and 6.9% (Wspeedup) compared toNoFairness. Compared to NFQ, the previous technique with

the highest system throughput (Wspeedup), FST reduces unfairness and max slowdown by 22%/16.1% and increases

Hspeedup by 4.2%. FST’s large performance improvement is mainly due to the large reduction in unfairness.9
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Figure 8. Average performance of FST on the 4-core system

Note that the overall trends in the 4-core system are similarto those in the 2-core system except that previous fair-

ness mechanisms do not significantly improve fairness in the4-core system. As explained in detail in Section 5.2.2,

this happens because previous fairness mechanisms prioritize non-intensive applications in individual resources re-

gardless of whether or not those applications are actually being slowed down.

Figure 9 shows the harmonic speedup performance of FST and other fairness techniques normalized to that of a

system without any fairness technique for each of the ten workloads. Figure 10 shows the system unfairness of all the

techniques for each of the ten workloads. We make two major conclusions. First, FST improves system performance

7In this subsection we also include data points for NFQ alone and PAR-BS alone with no FairCache to show how the uncoordinated combination of fairness
techniques at different shared resources can result in degradation of both performance and fairness compared to when only one is employed.

8Similarly, FST also reduces the coefficient of variation, analternative unfairness metric [41], by 45%.
9Since relative slowdowns of different applications are most important to improving unfairness and performance using FST, highly accurateTexcess esti-

mations are not necessary for such improvements. However, we find that with the mechanisms proposed in this paper the application which causes the most
interference for the most-slowed-down application is on average identified correctly in 70% of the intervals.
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(both Hspeedup and Wspeedup) and fairness compared to no fairness control for all workloads. Second, FST provides

the highest Hspeedup compared to the previous technique withthe highest average system performance (NFQ) on

seven of the ten workloads, and provides the best fairness compared to the previous technique with the best system

fairness (PAR-BS) on seven of the ten workloads.
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Figure 9. Normalized speedup of 10 4-core workloads
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Figure 10. Unfairness of 10 4-core workloads

5.2.2. Case StudyTo provide more insight into the performance and fairness improvements of FST, we analyze one

4-core workload in detail. This workload is a mix of applications of different levels of memory intensity.Art and

leslieare both highly memory-intensive, whilegamessandgromacsare non-intensive (as shown in Table 3). When

these applications are run simultaneously on a 4-core system with no fairness control, the two memory-intensive

applications (especiallyart) generate a large amount of memory traffic.Art’s large number of memory requests to

the shared resources unfairly slows down all other three applications, whileart does not slow down significantly.

Figures 11 and 12 show individual benchmark performance andsystem performance/fairness, respectively (note that

Figure 11 shows speedup over alone run which is the inverse ofindividual slowdown, defined in Section 3.1). Several
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observations are in order:

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ed
up

 o
ve

r 
A

lo
ne

 R
un art

leslie
gamess
gromacs

No Fairness
Technique

NFQ + 
Fair Cache

NFQ PAR-BS +  
Fair Cache 

PAR-BS FST 

Figure 11. Case Study: individual application behavior

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V
al

ue
 o

f m
et

ric

(a) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

V
al

ue
 o

f m
et

ric

(b) Max Slowdown

0.0

0.1

0.2

0.3

0.4

0.5

(c) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

No Fairness Technique
NFQ + Fair Cache
NFQ
PAR-BS + Fair Cache
PAR-BS
FST

(d) Wspeedup

Figure 12. Case study: system behavior

1. NFQ+FairCache significantly degrades system performance by 12.3% (Hspeedup) and 7.1% (Wspeedup) com-

pared to no fairness control. This combination slows down the memory-intensive applications too much, resulting in

a 16.7% increase in maximum slowdown compared to employing no fairness technique. The largest slowdowns are

experienced by the memory-intensiveart andlesliebecause they both get less cache space due to FairCache, and are

deprioritized in DRAM due to NFQ prioritizing infrequent requests (with earlier virtual finish times) fromgamess

andgromacs. On the other hand, when NFQ alone is employed, the memory non-intensive applications’ performance

is slightly improved by prioritizing them in DRAM at small reductions to the performance of the memory-intensive

applications. NFQ alone improves system performance by 6.7%/3.1% (HS/WS) and reduces unfairness/maximum

slowdown by 12.7%/10.9%. However, NFQ does not address interference caused in the shared cache so its gains are

limited.

2. With PAR-BS+FairCache and PAR-BS,art is heavily deprioritized with unfair improved performancefor the less

memory intensive applications resulting in improved overall system throughput (Wspeedup). These two techniques

are an example of where unfair treatment of applications in aworkload may increase system throughput at the cost

of large increases to unfairness and maximum slowdown (51.5%/39% and 40.4%/31.6% for PAR-BS+FairCache and

PAR-BS respectively) and degradation of average system turnaround time (Hspeedup) compared to not using any
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fairness technique. These techniques overly deprioritizememory intensive applications (specificallyart) because

they do not explicitly detect when such applications cause slowdowns for others. They simply prioritize non-intensive

applications all the time regardless of whether or not they are actually slowed down in the memory system. In contrast,

our approach explicitly detects when memory-intensive applications are causing unfairness in the system. If they are

not causing unfairness, FST does not deprioritize them. As aresult, their performance is not unnecessarily reduced.

This effect is observed by examining the most memory-intensive application’s (art’s) performance with FST. With

FST,art has higher performance than with any of the other fairness techniques.

3. FST increases system performance by 17.5%/11.6% (HS/WS)while reducing unfairness/maximum slowdown

by 21.4%/19.5% compared to no fairness control. In this workload, the memory-intensiveart and leslie cause sig-

nificant interference to each other in all shared resources and togromacsin the shared cache. Unlike other fairness

techniques, FST dynamically tracks the interference and the unfairness in the system in a fine-grained manner. When

the memory-intensive applications are causing interference and increasing unfairness, FST throttles the offendinghog

application(s). In contrast, when the applications are notinterfering significantly with each other, FST allows them to

freely share resources in order to maximize each application’s performance. The fine-grained dynamic detection of

unfairness and enforcement of fairness mechanisms only when they are needed allow FST to achieve higher system

performance (Hspeedup) and a better balance between fairness and performance than other techniques.

To provide insight into the dynamic behavior of FST, Figure 13 shows the percentage of time each core spends at

each throttling level. FST significantly throttles downart and lesliemuch of the time (but not always) to reduce the

inter-core interference they generate for each other and the less memory intensive applications. As a result,art and

leslie spend almost 25%/30% of their execution time at 10% or less oftheir full aggressiveness. Also, a lot of the

timeart can prevent bank service to the continuous accesses ofleslieto the same bank. FST detects this and disallows

art’s requests to be prioritized based on row-buffer hits for 74% of all intervals, preventingart from causing bank

service denial, as described in Section 3.5. Note thatart spends approximately 55% of its time at throttling level 100,

which shows that FST detects times when art is not causing large interference and does not penalize it. Figure 13

also shows that FST detects interference caused by not onlyart but also other applications.leslie, gromacs, and even

gamessare detected to generate inter-core interference for otherapplications in certain execution intervals. As such,

FST dynamically adapts its fairness control decisions to the interference patterns of applications rather than simply

prioritizing memory non-intensive applications. Therefore, unlike other fairness techniques, FST does not overly

deprioritizeart in the memory system.

We conclude that FST provides a higher-performance approach to attaining fairness than coarsely tracking the
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Figure 13. Case Study: application throttling levels

memory-intensity of applications and deprioritizing memory-intensive applications without dynamic knowledge of

interference and unfairness. FST achieves this by trackingunfairness in the system and making fairness/throttling

decisions based on that tracking in a finer-grained manner.

5.3. Effect of Throttling Mechanisms

As described in Section 3.2, FST uses the combination of two mechanisms to throttle an application up/down and

increase/decrease its request rate from the shared resources: 1) Applying anMSHR quotato each application, 2)

Adjusting the frequency at which requests in the MSHRs are issued to access L2. Section 3.5 explains how to prevent

bank service denial from FR-FCFS memory scheduling within FST. Figure 14 shows the effect of each of the different

throttling mechanisms, the effect of bank service denial prevention (BSDP), and FST on the 4-core system. Several

observations are in order:

1. Employing BSDP always improves performance regardless of the throttling mechanism that is used. BSDP’s

improvements are due to the resolution of a problem we refer to as theover-throttling problem. As explained in

Section 3.5 memory intensive applications that also have high row-buffer locality can cause significant interference

even if they are throttled when the memory controller uses anFR-FCFS scheduling algorithm. When this occurs

(using the terminology of Section 3.5), FST detects an already throttled down application to beAppinterfering and

continuously throttles it down further because the estimated unfairness remains high andAppslow stays the same. We

call thisover-throttlingof Appinterfering. BSDP resolves this issue by eliminating the cause of bank service denial

due to FR-FCFS scheduling.

In Figure 14, the fourth and fifth bars from the left in each subgraph show the importance of BSDP. Without

BSDP, enabling MSHR quotas destroys fairness (sub-figures (a) and (b)) and degrades system performance in terms

of harmonic mean of speedups (sub-figure (c)) as a result of unfair treatment of memory-intensive applications in

some workloads. The large increase in unfairness is mainly due to workloads that contain the applicationart. Art

is a highly memory-intensive workload with high row-bufferlocality. As such, as we described in Section 3.5 it can

cause bank service denial for concurrently executing applications even when it is throttled down. Additionally,art’s
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performance is very sensitive to the number of MSHR entries at its disposal. As a result, it can getover-throttledas

described above when MSHR quotas are employed for throttling. The fourth and fifth bars from the left in Figure 14

show that while the over-throttling problem that exists forthe workloads includingart does not result in an average

loss of system throughput (Wspeedup, sub-figure (d)) acrossall the workloads, it does have a large impact on system

fairness and average system turnaround time (as shown by sub-figures (a)-(c)). We conclude that BSDP is necessary

for significant improvements to system fairness when MSHR quotas are employed.

2. Without BSDP, the combination of MSHR quota and frequencythrottling perform worse than using MSHR

quota alone. The reason for this is theover-throttling of memory-intensive benchmarks in the absence of BSDP.

When both throttling mechanisms are employed, the negativeeffect ofover-throttlingdominates average performance

in our evaluated workloads. This leads to the combination ofthe two throttling mechanisms performing worse than

MSHR alone in the absence of BSDP.

3. UsingMSHR quotasis more effective than using frequency throttling alone when BSDP is employed. Using

MSHR quotastogether with BSDP achieves 97% of the performance improvement and 95% of the fairness improve-

ment provided by FST. However, as Table 6 shows that different applications are affected differently by small adjust-

ments to their MSHR quota values. Applications with high memory-level-parallelism such aslbm are sensitive to the

number of MSHRs they have available to them: small changes totheir MSHR quota results in large slowdowns. On

the other hand, applications such assphinx3andmilc do not make use of many MSHRs even when running alone as

they do not have high degrees of memory-level parallelism. For such memory-intensive applications with low MLP,

applying MSHR quotas as the throttling mechanism reduces the request rates only at the smallest throttling levels

(MSHR quotas of 1 or 2). Therefore, using the second throttling mechanism (frequency throttling) that reduces the

frequency at which requests are sent to L2 provides better, fine-grained control of request injection rate.

We conclude that using all mechanisms of FST is better than each throttling mechanism alone in terms of both

fairness and performance.
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Figure 14. Effects of different throttling mechanisms for F ST
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# of MSHRs 1 2 3 5 6 12 32 64 128
sphinx3 (IPC) 0.13 0.23 0.28 0.29 0.29 0.30 0.30 0.30 0.30

milc (IPC) 0.10 0.22 0.36 0.38 0.39 0.40 0.40 0.40 0.40
lbm (IPC) 0.04 0.10 0.22 0.26 0.30 0.39 0.45 0.46 0.48

Table 6. Sensitivity of alone performance (IPC) to # of MSHRs

5.4. Evaluation of System Software Support

Enforcing Thread Priorities: As explained in Section 3.4, FST can be configured by system software to assign

different weights to different threads. As an example of howFST enforces thread weights, we ran four identical

copies of theGemsFDTDbenchmark on a 4-core system and assigned themthread weightsof 1, 1, 4 and 8 (recall that

a higher-weight thread is one the system software wants to prioritize). Figure 15 shows that with no fairness technique

each copy ofGemsFDTDhas an almost identical slowdown as the baseline does not support thread weights and treats

the applications identically in the shared memory system. However, FST prioritizes the applications proportionally

to their weights, favoring applications with higher weightin the shared memory system. FST also slows down the

two copies with the same weight by the same amount. We conclude that FST approximately enforces thread weights,

thereby easing the development of system software which naturally expects a CMP to respect thread weights in the

shared memory system.
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Figure 15. Enforcing thread weights with FST

Enforcing an Alternative Fairness Objective (Maximum Tolerable Slowdown): Section 3.4 explained how

FST can be configured to achieve amaximum slowdown thresholdas determined by system software, that dictates

the maximum tolerable slowdown of any individual application executing concurrently on the CMP. Figure 16 shows

an example of how FST enforces this fairness objective when four applications are run together on a 4-core system.

The figure shows each application’s individual slowdown in four different experiments where each experiment uses a

different maximum slowdown threshold (ranging from 2 to 3) as set by the system software. As tighter goals are set by

the system software, FST throttles the applications accordingly to achieve (close to) the desired maximum slowdown.

The fairness objective is met until the maximum slowdown threshold becomes too tight and is violated (formgrid and

parser), which happens at threshold value 2. We conclude that FST can enforce different system-software-determined
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fairness objectives.
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Figure 16. Enforcing maximum slowdown with FST

In Algorithm 3, throttling is triggered when estimated systemunfairnessis greater than a system-software-specified

threshold. Figure 17 shows average system performance and fairness when using a system-software-specifiedmaxi-

mum slowdowntarget (Triggering Condition 2 from Section 3.4) compared to FST with anunfairnesstarget (Trigger-

ing Condition 1 from Section 3.4, which is the system-software target we use in all other experiments in this paper).

We conclude that similar system performance and fairness benefits can be gained using either system software goal:

maximum tolerable slowdown or maximum tolerable unfairness.

We evaluate sensitivity to the unfairness threshold which is part of the system software support in Section 5.8

separately.
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Figure 17. Comparing overall results with different system level QoS targets

5.5. Effects of Implementation Constraints

Shared resources may be located far away from each other on the chip. In order to eliminate timing constraints on

the sending of updates to theInterferencePerCore bit-vector from the shared resources, such updates can be made

periodically. EveryUpdateThreshold cycles, all shared resources send their local copies ofInterferencePerCore

to update the main copy at the L2. Once the updates are appliedto the main copy by taking the union of all bit-

vectors, FST checks the main copy ofInterferencePerCore. If the InterferencePerCore bit of a core is set,

FST increments theExcessCycles counter corresponding to the core by theUpdateThreshold value.
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Figure 18 shows the effect of periodic updates and sensitivity to chosen period lengths on the performance and

fairness improvements of FST. The figure shows that even withupdates occurring once every 1000 cycles, system

performance is almost identical and fairness improvementsare within 2.5% of FST with updates made every cycle.

This is because memory system interference generally results in excess cycles in the order of hundreds of cycles.

As such, our mechanism can tolerate updates happening periodically without incurring big losses in fidelity. We

conclude that using periodic updates (even when made at relatively long periods) eliminates any timing constraints on

the sending of updates to theInterferencePerCore bit-vector and does not significantly effect the performance and

fairness improvements of FST.
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Figure 18. Effect of periodic updates on FST’s performance a nd unfairness

5.6. Effects of Different Sources of Interference

Figure 19 shows the effect of taking into account interference from each of the interference sources we discuss

in Section 3.3. The figure shows that from the different interference sources discussed in Section 3.3, FST’s perfor-

mance is mostly sensitive to whether or not DRAM bank interference is included in the estimations. Without taking

into account DRAM bank interference, FST only improves performance by 5.1% (Hspeedup) and reduces unfair-

ness by 13.8% respectively. On the other hand, if we have an FST implementation that does not take into account

cache or DRAM row-buffer interference (i.e., one that takesinto account only DRAM bank interference), we can

achieve 97% of the total performance improvements of FST and94% of its total unfairness reduction. As we have

observed in Section 3.6, a significant portion of the hardware required to implement FST is required for accounting for

cache interference and DRAM row-buffer interference. As a result, this gives opportunity for a much less expensive

implementation of FST based only on DRAM bank interference.

5.7. Evaluation of Lightweight FST

Figure 20 compares the performance of the lightweight FST implementation described in Section 3.7 to that of

the baseline and the original full-blown FST we have been evaluating so far. The figure shows that the lightweight

implementation that requires2N cycles for trackingExcessCyclesinformation provides 98% of the system perfor-
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Figure 19. Sensitivity of FST to taking into account differe nt interference sources

mance and 95% of the system fairness benefits of the original FST which requiresN2 counters. We conclude that this

lightweight version of FST can be a more scalable yet high performance option to consider for systems with a larger

number of cores.
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Figure 20. Comparing overall results of original and lightw eight FST

5.8. Sensitivity to Unfairness Threshold

Figure 21 shows how FST’s average fairness and performance changes with different unfairness thresholds on our

evaluated 4-core workloads. Lowering theunfairness thresholdset by the system-software continuously improves

fairness and performance until the unfairness threshold becomes too small. With a very small unfairness threshold

(1.05), FST becomes 1) very aggressive at throttling down cores to reach the very tight unfairness goal, 2) too sen-

sitive to inaccuracies in slowdown estimation and therefore triggers throttling of sources unnecessarily. As a result,

both system performance and fairness slightly degrade. On the other hand, as the threshold increases, unfairness in

the system also increases (because throttling is employed less often) and performance decreases beyond some point

(because memory hog applications start causing starvationto others, leading to lower system utilization). Overall,

the unfairness threshold provides a knob to the system software, using which the system software can determine the

fairness-performance balance in the system. We find an unfairness threshold of 1.4 provides the best fairness and

performance for our 4-core workloads.
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Figure 21. Sensitivity of FST to unfairness threshold

5.9. Effect of Multiple Memory Controllers

Figure 22 shows the effect of using FST on a system with two memory controllers. Such a system has higher

available off-chip bandwidth and therefore less inter-core interference and less unfairness than a system with one

controller. Yet, even in such a system, FST provides significant improvements in system fairness and performance

compared to the baseline and combination of state-of-the-art fairness mechanisms at the different resources.
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Figure 22. Effect of FST on a system with two memory controlle rs

5.10. Evaluation of Using Profile Information

Figure 23 shows the effect of using profile information to account for slowdown due to throttling as described

in Section 3.3.4. The figure shows system performance (Hspeedup shown on the first bar) and system unfairness

(shown on the second bar) of a system using FSTwith profile informationnormalized to that of a system using

FSTwithout profile information. On average, using such profile information improves systemperformance by 4% and

leaves system unfairness unchanged across the 4-core workloads. However, such profile information is not completely

accurate in accounting for slowdowns due to throttling in all intervals since the factors described in Section 3.3.4 are

obtained by comparing performance of complete runs of each application at different throttling levels. Due to the

inaccuracies that exist, the use of this information results in increased system unfairness in two of the workloads.

6. Related Work

To our knowledge, this paper provides the first comprehensive and flexible hardware-based solution that enables

system-software-specified fairness goals to be achieved inthe entire shared memory system of a multi-core processor,
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Figure 23. Effect of using profile information for throttlin g related slowdown

without requiring fairness mechanisms to be implemented individually in each shared resource.

Prior work in providing fairness in different shared resources of CMP systems focused on fair caching [17, 20,

18, 32], fair memory scheduling [31, 29, 30, 22], and fair on-chip interconnects [24, 5, 13]. We have already pro-

vided extensive qualitative and quantitative comparisonsshowing that our mechanism significantly improves system

fairness and performance compared to systems employing thecombination of state-of-the-art fair cache capacity man-

agement [32] and fair memory scheduling [31, 30].

Bitirgen et al. [2] propose implementing an artificial neural network that learns each application’s performance

response to different resource allocations. Their technique searches the space of different resource allocations among

co-executing applications to find a partitioning in the shared cache and memory controller that improves performance.

In contrast to FST, this mechanism requires that resource-based fairness/partitioning techniques are already imple-

mented in each individual resource. In addition, it requires relatively more complex, black-box implementation of

artificial neural networks in hardware.

Herdrich et al. [14] observe that the interference caused by alower-priority application on a higher-priority appli-

cation can be reduced using existing clock modulation techniques in CMP systems. However, their proposal does not

consider or provide fairness to equal-priority applications. Zhang et al. [41] propose a software-based technique that

uses clock modulation and prefetcher on/off control provided by existing hardware platforms to improve fairness in

current multi-core systems compared to other software techniques. Neither of these prior works propose an online al-

gorithm that dynamically controls clock modulation to achieve fairness. In contrast, FST provides: 1) hardware-based

architectural mechanisms that continuously monitor shared memory system unfairness at run-time and 2) an online

algorithm that, upon detection of unfairness, throttles interfering applications using two new hardware-based throttling

mechanisms (instead of coarse-grained clock modulation) to reduce the interfering applications’ request rates.

Jahre and Natvig [19] observe that adjusting the number of available MSHRs can control the total miss bandwidth

available to each thread running on a CMP. However, this prior work does not show how this observation can be
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used by an online algorithm to dynamically achieve a well-defined fairness or performance goal. In contrast to this

prior work, our work 1) provides architectural support for achieving different well-defined system-software fairness

objectives while also improving system performance, 2) shows that using complementary throttling mechanisms and

preventing bank service denial due to FR-FCFS, as done by FST, provides better fairness/performance than simply

adjusting the number of available MSHRs (see Section 5.3), 3) shows that FST’s approach of throttling sources based

on unfairness feedback provides better system fairness/performance than implementing different fairness mechanisms

in each individual shared resource.

Zhuravlev et. al. [42] take a pure software-based scheduling approach to the resource contention problem for

multi-core memory systems. This paper proposes detecting which pairs of applications are likely to interfere less

with each other and scheduling them to execute on cores that share as small a number of resources as possible. Tang

et. al. [37] show the negative impacts of memory subsystem resource sharing on real datacenter applications. They

also show that pure software-based intelligent thread-to-core mappings can reduce the amount of memory subsystem

interference different applications suffer and improve their performance. The mechanisms we propose in this work

are orthogonal to those proposed by Zhuravlev et. al. and Tang et. al. as we address the problem of inter-core

memory system interference in a finer-grained fashion usinga hardware/software cooperative approach: First, the mix

of applications to be scheduled may be such that whatever software schedule is chosen high inter-core interference

will exist among the applications sharing multiple memory system resources. In such cases, pure software-based

scheduling approaches can not be as effective. However, FSTcan provide performance and fairness improvements

since it throttles applications fine-grained manner. Second, even if inter-core interference can be somewhat reduced

using better scheduling, after a number of applications have been scheduled to share some memory system resources,

an FST like approach can further improve system fairness andperformance by dynamically controlling memory

system interference at a finer-grained level.

Prior work on SMT processors (e.g., [39, 26, 25, 3]) propose fetch policies to improve performance and/or fairness

in such processors. These techniques are not applicable to the problem we address, since they mainly address sharing

of execution pipeline resources and not the shared memory system. Eyerman and Eeckhout [9] propose a technique

to estimate the execution times of simultaneously running threads had they been run alone. This work estimates

interference in the execution resources and does not deal with memory system interference in a detailed manner. As

such, our proposed memory interference/slowdown estimation and source throttling techniques are orthogonal to this

prior work.

Finally, several prior papers investigated how to handle prefetch requests in shared resources [36, 7, 6]. Even though
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we do not consider prefetching in this paper, our recent work[6] describes how our FST proposal can be adapted to

systems that employ prefetching.

7. Conclusion

We proposed a low-cost architectural technique, Fairness via Source Throttling (FST), that allows system-software

fairness policies to be achieved in CMPs by enabling fair sharing of the entire memory system. FST eliminates the

need for and complexity of multiple complicated, specialized, and possibly contradictory fairness techniques for dif-

ferent shared resources. The key idea of our solution is to gather dynamic feedback information about the slowdowns

experienced by different applications in hardware at run-time and, based on this feedback, collectively adjust the

memory request rates of sources (i.e., cores) to balance applications’ slowdowns. Our solution ensures that fairness

decisions in the entire memory system are made in tandem, thereby significantly improving both system performance

and fairness compared to the state-of-the-artresource-basedfairness techniques implemented independently for dif-

ferent shared resources. We have also shown FST is configurable by system software, allowing it to enforce thread

priorities and achieve different fairness objectives. We conclude that FST provides a promising low-cost substrate

that can not only improve the performance and fairness of future multi-core systems but also ease the task of future

multi-core system software in managing shared on-chip hardware resources.
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