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Abstract

This paper introduces a technique called Demand-Only
Broadcast that reduces the power consumption of the
register file and result bypass network in a clustered ex-
ecution core. With this technique, an instruction’s result
is only broadcast within remote clusters if it is needed
by dependants in those clusters. Demand-Only Broad-
cast was evaluated using a performance–power simula-
tor of a high-performance clustered processor which al-
ready employs techniques for reducing register file and
instruction window power. By eliminating 59% of the
register file writes and intra-cluster broadcasts, the to-
tal processor power consumption (including the hard-
ware needed by this mechanism) is reduced by 10%,
while having less than a 1% impact on IPC. Demand-
Only Broadcast also results in a 10% higher IPC and
4% lower power consumption than a clustered proces-
sor with a partitioned register file.

1. Introduction

Many high-performance processors use large instruc-
tion windows to exploit ILP. Instruction windows may
be partitioned into clusters to reduce scheduling latency
and the minimum data forwarding delays. By steering
dependent instructions to the same cluster, most of the
inter-cluster forwarding delays can be avoided, resulting
in an overall performance improvement. Clustering the
execution core does not necessarily reduce power dissi-
pation, however, because many structures may be repli-
cated in each cluster. This paper investigates the power
and performance of clustered execution cores and intro-
duces Demand-Only Broadcast, a technique for reduc-
ing the power consumption in a clustered execution core.

Some wide-issue processors, such as the Alpha
21264 [6], duplicate the physical register file in order
to reduce its access latency. By duplicating the register
file and cutting the number of read ports to each copy in
half, the area of each copy, and thus the access latency,

is reduced. In a processor with a replicated register file,
an instruction’s result must be broadcast to all clusters,
even though it may never be needed in some clusters.
With Demand-Only Broadcast, a producer instruction’s
result is only broadcast within the clusters that contain
its consumers at the time that its scheduling tag is broad-
cast. If a consumer is fetched and issued to a remote
cluster after the producer’s tag was broadcast and the
producer’s result was not written to the remote cluster,
then a copy instruction must be inserted to broadcast the
result in the remote cluster. The power consumption of
the register file and bypass network can be significantly
reduced by limiting the number of remote-cluster broad-
casts and register file writes.

This paper evaluates the power and performance of
Demand-Only Broadcast in a 4-cluster processor capa-
ble of executing up to 16 instructions per cycle. When
compared to a baseline clustered processor with a repli-
cated register file, Demand-Only Broadcast reduces the
number of register file writes and intra-cluster tag broad-
casts by 59%. While both of these models have the same
register file latency, the total power consumption is re-
duced by 10% while having less than a 1% impact on
IPC. The Demand-Only model is also compared to an-
other clustered processor that uses a partitioned register
file to reduce latency and power. While holding the cycle
time constant, Demand-Only Broadcast has 8% higher
IPC and 4% lower power consumption than the proces-
sor with a partitioned register file.

Section 2 discusses related clustering techniques which
limit result broadcast. Section 3 explains the baseline
processor used to evaluate Demand-Only Broadcast, and
Section 4 describes its implementation. Section 5 de-
scribes a previously published model to which we com-
pare our results. Sections 6 and 7 explain the experimen-
tal framework and the results, and Section 8 concludes.



2. Related Work

There are several clustering paradigms that limit cluster
communication. This paper will discuss those microar-
chitectures which implement sequential ISAs [14].

In the Multiscalar processing paradigm [16], a pro-
gram’s instruction stream is divided into contiguous sec-
tions called tasks which are executed concurrently on
several processing units. Because there may be data de-
pendences between the tasks, the live-out values from
a task must be forwarded to successive tasks executing
on other processing units. The compiler can identify the
instructions that may produce live-outs, and inserts in-
structions called release instructions into the code to in-
dicate which values should be forwarded.

Several clustered processors [8, 9, 20] use a centralized
instruction fetch unit but steer instructions to one of sev-
eral execution clusters. All of these paradigms rely on
buffers or similar mechanisms to forward data between
clusters. These buffers increase the latency for forward-
ing values between clusters because the copy or forward-
ing operations must be scheduled. Demand-Only Broad-
cast, however, does not use forwarding buffers.

In the Multicluster Architecture [4], the physical register
file, scheduling window, and functional units are parti-
tioned into clusters. Each cluster is assigned a subset of
the architectural registers. If an instruction needs a reg-
ister operand from another cluster, copies of the instruc-
tion must be inserted into more than one cluster. These
extra instructions must contend with regular instructions
for scheduling window ports, register file ports, execu-
tion cycles, and space within the instruction window.
Hence they may lower IPC, although the Multicluster
paradigm benefits from a higher clock frequency com-
pared to a centralized core.

The architecture described by Canal, Parcerisa, and
González [3, 12] also partitions the physical register file,
scheduling window, and functional units. While depen-
dent instructions within the same cluster can execute in
back-to-back cycles, inter-cluster forwarding takes two
or more cycles. Instructions write their register results
only to the partition of the physical register file in their
local cluster. If an instruction needs a source operand
that resides in a remote cluster, a copy instruction must
be inserted into the remote cluster. Only copy instruc-
tions may forward register values between clusters. By
limiting the number of copy instructions that can be ex-
ecuted in a cycle, the number of register file write ports
and global bypass paths can be reduced. This will reduce
the register file and scheduling window access times and
increase the clock frequency. Furthermore, since the en-
tire register file is not replicated across clusters, each

partition can have fewer entries than if the entire reg-
ister file were replicated, which further reduces the reg-
ister file access time. However, as with the Multiclus-
ter paradigm, the copy instructions may lower IPC. This
paradigm is compared against Demand-Only Broadcast,
and it is explained in more detail in Section 5.

3. Baseline Processor Overview

The baseline processor used for this paper is a 15-stage
superscalar processor with an execution core partitioned
into 4 clusters, each capable of executing 4 instructions
per cycle. Figure 1 shows an overview of the execu-
tion core. Each cluster holds one fourth of the schedul-
ing window entries, and like the Alpha 21264 [6], each
cluster contains a copy of the physical register file. The
pipeline is shown in Figure 2. The dark lines separate
the in-order and out-of-order stages of the pipeline, and
the shaded stages denote the operations that are local to
each cluster. Instructions are fetched and decoded in the
first 4 cycles. In the next 5 cycles, instructions are re-
named and steered to a cluster. After instructions are
assigned to a particular cluster, they are issued (i.e. in-
serted into the cluster’s scheduling window). After an
instruction becomes ready and is selected for execution,
it reads the register file and then executes.
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Because it takes one cycle to forward data across one
cluster, there will be 1 cycle bubble between the exe-
cution of an instruction in cluster 0 and a dependant in
cluster 1; there will be 2 bubbles between the execution
of an instruction in cluster 0 and a dependant in clus-
ter 2; and so on. The data cache is replicated in order
to reduce the number of read ports and load access la-



tency. Stores must write data to both copies, but loads
read from only the closest cache.

Figure 3 shows the contents of one cluster. Each clus-
ter contains a copy of the Busy-Bit Table [18], the lo-
cal scheduling window, a copy of the register file, four
functional units, and bypass logic for both data and tags.
While our simulation model assumes all-purpose func-
tional units, Demand-Only broadcast can be used in pro-
cessors with special-purpose functional units.
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Figure 3. Logic within one Cluster.

3.1. Instruction Steering

The performance of a clustered processor is sensitive to
the steering mechanism used [1, 12]. Most steering algo-
rithms try to address two adverse goals: (1) minimizing
inter-cluster communication and (2) load balancing in
order to effectively use all of the processor’s resources.
We have experimented with using combinations of sev-
eral heuristics including Modulo-N [1, 3], dependence-
based [11], predicted Last-Source-Ready [17], and the
DCOUNT threshold [12].

A dependence-based steering algorithm was used in the
experiments for this paper. An instruction’s cluster pref-
erence is the cluster which holds its register source
operand. If an instruction has two operands, the first is
used by default.1 If it has no source operands, its cluster
preference is assigned according to a Modulo-4 heuris-
tic. The steering logic also keeps track of the number of
free scheduling window ports and entries (and physical

1For instructions with two source operands, random operand selec-
tion and Last-Source-Ready prediction did not significantly improve
IPC. Knowledge of whether or not a source operand had been pro-
duced would further complicate the steering logic, and it may require
adding additional ports to the BBTs.

register file entries in the case of the banked register file).
If any of these resources are not available in the desired
cluster, the instruction is assigned to the closest cluster.
This algorithm, while not optimal, performed the best of
all of the viable steering heuristics we studied on all of
the models discussed in Section 6.

3.2. Instruction Issue

When an instruction is first placed into the scheduling
window, the Busy-Bit Table (BBT) is read to determine
if its source operands are ready. The BBT, which is in-
dexed by physical register number, indicates which in-
structions have already broadcast their destination tags
to the local cluster. When an instruction is issued, it
reads the BBT entries corresponding to the physical reg-
isters of its source operands, as well as the tag buses. If a
source operand’s BBT entry is set or its tag is broadcast
in that cycle, then the instruction sets the Ready bit in its
reservation station entry. If the BBT entry is clear and
the tag is not broadcast in that cycle, then the Ready bit
is not set. A BBT entry is cleared when a new instruction
is assigned to the corresponding physical register.

Each cluster has its own copy of the BBT because dif-
ferent clusters will receive an instruction’s tag broadcast
in different cycles. The BBT has two read ports for ev-
ery instruction that can be issued to the local scheduling
window in a given cycle. Since up to 16 instructions
may broadcast their tag in a given cycle, 16 bits of the
table may be set in a given cycle. Since up to 16 new is-
sued instructions are assigned physical destination reg-
isters each cycle, 16 bits may be cleared in a cycle. Any
arbitrary number of bits may be cleared in the event of
a branch misprediction. For the purposes of measuring
the power consumption of the BBT, we assume just two
wordlines are needed per bit to support the setting and
clearing operations. The physical register numbers for
each instruction are decoded and ORed together before
updating the BBT.

3.3. Instruction Scheduling

The scheduling window holds instructions that are wait-
ing to execute. Each entry holds the physical regis-
ter numbers and Ready bits for an instruction’s source
operands. An instruction’s Ready bits are set when its
source operands’ tags have been broadcast, and it re-
quests execution after all of its Ready bits are set. Since
an instruction’s consumers may reside in any cluster, it
broadcasts its destination tag and result to all clusters.
Because instructions are scheduled for execution several
cycles before they execute, their tags are broadcast sev-
eral cycles before their data is broadcast.



3.4. The Register File

The register file used in the baseline model is banked
by using Register Write Specialization, first described
by Seznec et al [15]. The register file is divided into
four banks in order to reduce the number of write word-
lines per bit cell. All instructions in the same cluster
will write to the same bank, and no other instructions
will write to that bank. For example, in our baseline
configuration there are 512 physical registers. All in-
structions in the first cluster are assigned a physical reg-
ister number between 0 and 127; all instructions in the
second cluster are assigned a physical register number
between 128 and 255, and so on. Because only four in-
structions from each cluster may execute in a cycle, only
four write wordlines will be needed for each bank. All
four banks are stacked vertically, which means that the
width of the register file is still determined by the total
number of write and read ports: 16 and 8, respectively.
The height of the banked register file is reduced because
each bit cell has only 4 write wordlines rather than the
16 that are needed in the unified register file. All instruc-
tions must still broadcast their results to all four copies
of the register file. Using a banked register file adds an
additional constraint on cluster assignment: if all physi-
cal registers in a particular bank have been allocated, no
instructions may be steered to that cluster, even if there
is room in the scheduling window. However, simula-
tions comparing it to an unbanked register file showed
that this affected IPC by less than 1%. The register file
described here is replicated across all four clusters to re-
duce the number of read ports.

4. Demand-Only Broadcast Implementation

When using Demand-Only Broadcast, an instruction
does not broadcast its result to the register file and func-
tional units in another cluster unless that cluster holds a
consumer when the instruction’s tag is broadcast. The
Busy-Bit Table in each cluster keeps track of which
physical registers are needed by instructions in the clus-
ter. Rather than just 1 bit for each BBT entry, there are
two: the “Broadcast bit” indicates if the tag has been
broadcast to that cluster, and the “Use bit” indicates if
there are any instructions within that cluster requiring
that physical register. BBT entries are reset when an ar-
chitectural register is first mapped to a physical register,
just as in the Baseline.

When an instruction is first placed into a cluster, it reads
the BBT entries corresponding to its source operands. If
both the Use and Broadcast bits of an entry are set, then
the source operand is available and the corresponding
Ready bit in the instruction’s reservation station entry is

set. The case where the Broadcast bit is set but the Use
bit is clear is discussed in Section 4.1. The instruction
sets the Use bits of those BBT entries, if they are not
already set, as well as the Use bit for the BBT entry of
its own destination physical register number.

When an instruction’s tag is broadcast to a cluster, the
Broadcast bit for its destination register is set, just as in
the baseline. Additionally, it reads out the value of the
Use bit. If the Use bit is set, the instruction’s result will
be broadcast to the register file and functional units in
this cluster. If the Use bit is not set, the intra-cluster data
broadcast (i.e. the broadcast within the local cluster)
will be blocked. This may add one gate to the data path,
depending on the implementation.

There is plenty of time to set the controls to gate the
intra-cluster data broadcast and prevent the register file
write. This is because normally, the instruction’s data
would be broadcast N cycles after its tag is broadcast
(assuming N is the number of pipeline stages between
the last scheduling stage and the last execution stage for
a majority of integer instructions). When the Use bit is
read, it will enable the latch for the data result bus N cy-
cles later. N is generally at least as large as the minimum
number of cycles for the register file access plus execu-
tion, and will increase as pipeline depths increase. For
example, N is 5 cycles in the Intel Pentium 4 [7].

Table 1 gives an example in which an instruction A
in Cluster 0 produces a value needed by instruction B,
which is issued to Cluster 3. In this example, an in-
struction’s result is broadcast 2 cycles after its destina-
tion tag. BBT-0[A] refers to the BBT entry in Cluster
0 corresponding to A’s destination register, and BBT-
3[A] refers to the BBT entry for A in Cluster 3. In cycle
2, instruction B is issued to Cluster 3, and it reads and
updates the BBT entry for instruction A, and it sets the
Use bit for its own entry. In cycle 3, A’s tag is broadcast
to Cluster 3. By this time, BBT-3[A].use has been set,
so A’s result will be broadcasted.

Cycle Initial state: A is in Cluster 0’s scheduling window.
BBT-0[A].use = 1.

0 A is selected and broadcasts tag to Cluster 0.
Set BBT-0[A].bc = 1.

2 A’s data is broadcast to Cluster 0.
B is issued to Cluster 3. Set BBT-3[A].use = 1.

3 A’s tag is broadcast to Cluster 3. Set BBT-3[A].bc = 1.
Since BBT-3[A].use is 1, don’t block data broadcast

in cycle 5.
B wakes up.

4 B is selected for execution and broadcasts its tag.
5 A’s data is broadcast to Cluster 3.

Table 1. Timing for an inter-cluster broad-
cast.



4.1. Copy Instructions

In the previous example, if instruction B were issued
to cluster 3 after A’s tag was broadcast to that cluster
and the Use bit for A’s BBT entry in cluster 3 (BBT-
3[A].use) was not set, then A’s data would not be broad-
cast to that cluster in cycle 5. In this situation, a copy in-
struction will be required to re-broadcast the result. The
copy instruction will be inserted into the cluster that pro-
duced the source operand (although it could actually be
inserted into any cluster that didn’t block the broadcast).
After being scheduled, it will read the register file and
re-broadcast the physical register destination tag and the
data, similar to a MOVE instruction with the same phys-
ical source and destination register.

In order to detect if a copy instruction is needed, when an
instruction is first issued and reads the BBT entry of its
source operand, it must read out the old contents before
it is set, like a scoreboard. If the Use bit is clear and
the Broadcast bit is set, then a copy instruction must be
inserted. The instruction’s Ready bit is not set.

Insertion of Copy Instructions

In each cluster there is a bit-vector specifying which
physical registers require copy instructions to re-
broadcast the data. All instructions issued to a cluster
may set bits of this bit-vector. If an instruction reads a
1 for the Broadcast bit and a 0 for the Use bit of one of
its source operands, the bit of the vector corresponding
to that physical register is set.

The bit vectors from all four clusters are ORed together
to form the Copy Request Vector. This vector specifies
all physical registers requiring a copy instruction. The
process of updating this vector is pipelined over two cy-
cles to account for wire delays, and it is later used by the
steering logic to insert copy instructions. Assuming all
instructions could have at most 2 source operands, up to
32 bits of this vector could be set each cycle if 16 in-
structions are issued per cycle. A priority circuit is used
to pick up to four physical registers per cluster for which
to create copy instructions. The steering logic will then
clear the selected bits of this vector and insert copy in-
structions for the selected physical registers.

Copy instructions are not inserted until at least five cy-
cles after the consumer instructions requiring the re-
broadcast have been issued. This 5-cycle delay is due
partially to the fact that the steering logic may have
already begun to steer instructions that will be issued
within the next 3 cycles, and there is a 2-cycle delay
between the clusters’ issue logic and the steering logic,
which accounts for the delay for updating the Copy Re-
quest Vector. Performance is relatively insensitive to

this delay since the scenario where copy instructions are
needed is rare.

The example in Table 2 illustrates the scenario where in-
struction A’s tag is broadcast before B is issued. Initially,
A is in Cluster 0 and B will later be issued to Cluster 3.
When A’s tag is broadcast to Cluster 3, the Use bit of its
BBT entry is clear, so its data broadcast will be blocked
2 cycles later. When instruction B is issued to this clus-
ter and reads the BBT in cycle 4, it must request a copy
instruction because the Use bit of A’s BBT entry was
clear while its Broadcast bit was set. Instruction B then
resets the Broadcast bit and sets the Use bit of this entry.
In cycle 5, A’s data broadcast is blocked even though B
has been issued because the control signals have already
been set. By cycle 6, the bit of the Copy Request Vec-
tor corresponding to A’s destination register has been set
and the steering logic inserts a copy instruction. In cycle
9, the copy instruction is issued into Cluster 0, and its tag
is broadcast to Cluster 3 in cycle 12. B’s execution was
delayed by 9 cycles because it missed the tag broadcast.

Cycle Initial: A is in Cluster 0.
BBT-0[A].use is 1, BBT-3[A].use is 0.

0 A is selected and broadcasts tag to Cluster 0.
Set BBT-0[A].bc = 1.

3 A’s tag broadcast to Cluster 3.
Read BBT-3[A].use and set BBT-3[A].bc = 1.
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. BBT-3[A].use = 1 and
BBT-3[A].bc = 0. Request copy.

6 CRV[A] is set.
9 Copy-A is issued (already awake) and selected.
12 Copy-A broadcasts tag in Cluster 3; B wakes up.

Set BBT-3[A].bc.
13 B is selected and broadcasts its tag to Cluster 3.

Table 2. Timing for an Intra-Cluster Broad-
cast Requiring a Copy Instruction.

Not only do copy instructions delay the execution of
their dependants, but they may take resources away from
real instructions performing useful work. They occupy
issue ports, possibly causing instructions in the renam-
ing stage to be stalled or steered to an undesired cluster.
They will also occupy space in the scheduling window
before they are executed, although they do not remain
in the window long because they are already “Ready”
when they are placed in the window. They may also
prevent a real instruction from being selected for execu-
tion as soon as possible, since copy instructions must be
selected and access the physical register file like regu-
lar instructions. This extra demand on the hardware re-
sources may lower IPC and consume power. However,
because copy instructions are only inserted if an instruc-
tion’s source operand was steered to a different cluster



and that operand was already broadcast and it was not
written to the local physical register file, copy instruc-
tions are rarely needed and impact the IPC by less than
1%. Section 7 will show power and performance results.

5. Partitioned Register File Model

We compared Demand-Only Broadcast to another ma-
chine model that reduces register file and broadcast
power by using a partitioned register file. This model
is a 16-wide, 4-clustered microarchitecture just like the
Baseline. The fundamental difference is that the phys-
ical register file is partitioned rather than completely
replicated, with each cluster holding one fourth of the
entries. When instructions execute, they broadcast their
result only to the cluster in which they reside. Likewise,
when instructions are selected for execution, their des-
tination tag is only broadcast to the local cluster. This
model is similar to the paradigm used by Parcerisa and
González [12].

Copy instructions must be used to forward data between
clusters. Copy instructions are the only instructions that
broadcast tags and data from one cluster to another. By
limiting the number of copy instructions that can be exe-
cuted, the number of register file write ports and data and
tag buses can be reduced. Excluding copy instructions,
each cluster needs 4 tag buses and write ports, assum-
ing only 4 instructions per cluster finish execution per
cycle. By assuming each cluster can execute at most 1
copy to each remote cluster per cycle, each cluster will
need a total of 7 write ports and buses: 4 for regular in-
structions and 3 for copy instructions. Like the results
reported by Parcerisa et al. [13], our simulations showed
that adding more bypass buses and ports did not signifi-
cantly help IPC. However, we note that further reduction
in the number of ports would complicate the scheduling
logic because multiple clusters would have to arbitrate
for the ports and buses.

When a copy instruction is executed, the value it is copy-
ing will be available in two physical registers in different
clusters. Since an architectural register may be valid in
more than one cluster, the Register Alias Table keeps
track of up to four mappings for each architectural reg-
ister. When an instruction retires, all valid physical reg-
ister entries belonging to the previous instance of the
instruction’s architectural destination register must be
deallocated.

In this paradigm, instructions do not need to read the
BBT before determining if a copy instruction must be
inserted to receive a source operand. Instructions de-
termine if a copy instruction is needed after they have
been assigned to a cluster. If an instruction is steered

to a cluster which does not have a valid physical regis-
ter mapping for one of its source operands, then a copy
instruction is needed. In order to avoid a performance
bias towards the Demand-Only model, we will assume
that this model can issue a copy instruction instanta-
neously instead of taking five cycles as in the Demand-
Only model. Note that this is an aggressive assumption
because according to the steering algorithm used, the
subsequent instructions cannot be assigned to clusters
until after the copy instruction and instruction requiring
the copy have been assigned to clusters. When the in-
struction is steered and updates its RAT entry, the RAT
entry of the register being copied is also updated to in-
dicate that it has a valid mapping in the cluster to which
the dependent instruction was steered.

Because values may reside in more than one register
file partition, each partition should have more than one
fourth of the physical register file entries that the Base-
line model has in order to prevent the processor from
running out of physical registers too frequently. We
chose to use physical register file partitions with 224 en-
tries. This number was selected for two reasons: (1) it is
scaled linearly from the configuration used by Parcerisa
et al. [13] (the 4-cluster model has 1.74 times as many
entries as the 1-cluster model); (2) further decrease in
the size caused an IPC degradation in a few benchmarks,
while further increase did not noticeably affect IPC.

The scheduling windows in this model are smaller than
in the other models because there are only 7 tag buses
per window rather than 16. The number of scheduling
window entries was increased from 64 per cluster to 96
per cluster to account for the copy instructions. While
the smaller window may allow the clock frequency to be
increased, we will assume the clock frequency remains
constant in order to make a fair comparison of the power
consumption.

6. Experimental Framework

We have measured the IPC and per-cycle power con-
sumption for three processor models: the baseline pro-
cessor (BASE), the baseline using Demand-Only Broad-
cast (DOB), and the model with the partitioned reg-
ister file (PART). Our simulator is a cycle-accurate,
execution-driven processor which models mispredicted-
path effects and executes the Alpha ISA2. Our power
model is based on the Wattch framework [2]. Wattch
models switching power given the amount of switching
activitiy in individual components on the chip. It has

2In response to a reviewer’s comment, we note that we are not us-
ing any of the frequently used publically available performance sim-
ulators. Our simulator was written from scratch by members of our
research group.



been heavily modified to work with our processor simu-
lator and accurately represent our processor models. The
functions for estimating the power of the basic proces-
sor building blocks (arrays, CAMS, some combinational
logic and wires, and clock distribution) are taken from
Wattch, although the method of measuring the switching
activity factor and the maximum power consumption of
individual components have been modified. This section
discusses some of the major changes to Wattch.

First, most of the access counters have been changed
from those present in the original Wattch framework.
Our model distinguishes between different types of ac-
cesses to many structures. For example, data cache reads
and writes do not consume equal amounts of power in
our model. The most obvious difference is due to the
fact that the cache is duplicated in order to reduce the
access latency by halving the number of read ports to
each copy. A write, from either a store instruction or a
cache-line fill, must update both copies of the cache.

In our register files, writes also have a disproportion-
ate power dissipation compared to reads [19]. The pri-
mary discrepancy is that conventional register file bit
cells have two bit lines for each write port and one bit
line for each read port [5]. As a result, we model reads
and writes as different types of accesses.

We have made some assumptions about the floorplan-
ning of the execution core in order to model the power
dissipation of the result bypass network. Within each
cluster, all functional units are stacked vertically as
shown in Figure 3 so that the data bitlines are inter-
leaved. The register file sits directly above the functional
units, muxes, and the latches which hold data being read
from and written to the register file, in addition to the
data that was broadcast from other clusters. The width of
each cluster is a function of both functional unit area es-
timates [10] as well as the maximum number of bitlines
at any point in the datapath for wide-issue clusters. We
conservatively assume that this width is constrained by
width of the register file. In the baseline configuration,
the result bus from each functional unit runs vertically
within its own cluster to the register file write latch, as
well as horizontally to the other clusters and then verti-
cally across all other stacks as well. In the model with
the partitioned register file, the result buses run to only
the local physical register file and bypass muxes.

Some of the additional units in our power model not
present in the original Wattch model include a 32-entry
Memory Request Buffer that holds memory requests that
miss in the L1 instruction and data caches (each entry
supporting up to 4 piggy-backed instructions), multi-
ported instruction and Level-2 caches, and logic for in-
serting copy instructions. The processor configurations

Instruction Cache 64KB 4-way set associative, 64B line size
2 ports, 2-cycle directory and data access,

Branch Predictor hybrid 64K-entry gshare/PAs, 4096-entry
4-way BTB, 32-entry RAS

Decode, Rename, Steer 16 instructions per cycle, 6 cycles
Issue and Exec Width 16 general-purpose functional units
Data Cache 2 copies, 64KB, 4-way set associative,

64B line size, 2 read ports, 2 write ports
(per copy). 3-cycle loads

Instruction Window 512 instructions in-flight
Unified L2 Cache 1MB, 8-way, 64B lines, 10-cycle access

2 banks each with 1 read, 1 write port,
contention is modeled

Main Memory 32 banks, 100 cycles access (minimum)

Table 3. Common Processor Configura-
tions

BASE DOB PART

PHYS. REG. FILE (each cluster)
entries, per cluster 512 512 384
write wordlines 4 4 7
write bitlines (dual rail) 16 16 7
read ports 8 8 8

SCHED WINDOW (each cluster)
num entries 64 64 128
tag buses 16 16 7
source tag size (bits) 9 9 9

RAT entry size (in bits) 9 9 40
BBT (each cluster)

num entries 512 512 384
entry size (bits) 1 2 1
num decoders 40 40 31

Table 4. Model-Specific Configurations

that are the same for all of our models are listed in Ta-
ble 3, and those that depend on the model are listed in
Table 4. All of the units listed, as well as 15 pipeline
stages, were modeled with Wattch. A conditional clock-
ing style similar to that of CC3 in Wattch is used: an ar-
ray’s power dissipation scales linearly with the number
of ports used, except that all units dissipate at least 19%
of their maximum every cycle, even when they are not
accessed or fewer than 19% of the ports are accessed.

7. Results

We have evaluated the three models on the SPECint2000
benchmarks. Smaller input sets were used on some
benchmarks to reduce simulation time. The average
power estimates shown in this section are based on “per-
cycle” power estimates of all processor components, al-
though not all configurations may run with the same
cycle time. The per-cycle power dissipation for each
model, relative to the Baseline average, is shown in Fig-



ure 4. Each bar shows the contribution of each of the
processor units to the total processor power consump-
tion. The components are shown in the order listed in
the graph’s legend. The components that are not directly
affected by our technique fall under the other category,
although they may be indirectly affected by modifica-
tions in the program behavior. These include compo-
nents of the execution core as well as instruction, data,
and level 2 caches; translation tables; and load-store
buffers. The bottom two categories measure all dynamic
power consumption due to result broadcasts and register
file writes. Inter-Cluster Broadcast is the power con-
sumption of the horizontal data buses running between
the clusters. In the DOB model, all results are broadcast
across the entire inter-cluster bypass, although the PART

model only broadcasts the results of copy instructions
across the network. Intra-Cluster Broadcast, is the
power for broadcasting a result within one or more clus-
ters, and includes the power consumption for register file
writes. The power dissipation in this category is dom-
inated by the register file write, not the bypass buses.
This is the component of power that is directly affected
by using Demand-Only Broadcast. The PRF Read com-
ponent includes all dynamic power consumption for the
register file reads, in addition to the power when the reg-
ister file is not accessed at all (i.e. the “turnoff” power).
The power consumption of the logic for inserting copy
instructions was less than 0.2% of the total power con-
sumption, and is not visible on the graph. Almost all of
the BBT power dissipation is from the decoders, not the
BBT array itself, which is just a few bit-vectors.

The PART model had a higher power dissipation than
the DOB model because the rename logic had to keep
track of four mappings per architectural register. It
benefits from having fewer scheduling tag broadcasts,
though. The power consumption for the DOB model is
10% lower than that of the BASE model, and 4% lower
than that of the PART model.

Figure 5 shows the IPC of each benchmark for each
model. On average, the DOB model has an IPC within
1% of BASE and 10% higher than the PART model, de-
spite the fact that PART has more scheduling window and
register file entries. The PART model’s IPC is lower be-
cause copy instructions increase the length of the data
dependence chains.

Table 5 shows an average distribution of the number of
clusters in which register values are consumed. There
was little variance among benchmarks. On average, with
the Demand-Only technique, there are 1.6 register file
writes per architected register destination, compared to
4 in the Baseline model. Even though values are needed
in only slightly more clusters in the PART model, it re-
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Figure 5. IPC on SPECint2000 Benchmarks

quires 16 times as many copy instructions as the DOB

model because every cluster in which an instruction’s
result is consumed (other than the producing cluster) re-
quires a copy. Furthermore, copy instructions can have a
negative-feedback effect: because copy instructions oc-
cupy resources, they may cause other instructions to be
steered to an undesired cluster, thus creating even more
copy instructions.

Num clusters 1 2 3 4
DOB 50.5% 41.2% 6.5% 1.7%
PART 48.9% 41.8% 7.0% 2.3%

Table 5. Fraction of results with given num-
ber of cluster broadcasts.

8. Conclusion

This paper has demonstrated that the physical register
file is a large source of power consumption in clustered
processors, and Demand-Only Broadcast is an effective
technique for reducing this power. This technique was



evaluated in a 16-wide clustered processor, although it
is applicable in clustered processors with narrower issue
widths as well. In a processor with 4 clusters, it reduces
the number of register writes from 4 to 1.6 per register-
updating instruction. It reduces total processor power
consumption of a high-performance clustered processor
by 10% while impacting IPC by less than 1%.
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