
A Comparative Performance Evaluation of Various State 
Maintenance Mechanisms 

Michael Butler and Yale Patt 
Department of Electrical Engineering and Computer Science 

The University of Michigan 
Ann Arbor, Michigan 48109-2122 

Abstract 

Speculative execution and dynamic scheduling are 
two promising techniques for achieving high perfor- 
mance in superscalar processors. These techniques re- 
quire a mechanism for maintaining all architecturally 
visible machine state. In this study we examine the 
performance implications of three common state main- 
tenance mechanisms: the reorder buffer, the history 
bufler, and checkpointing. We model the execution of 
the four integer benchmarks from the SPEC89 suite 
for a variety of maintenance techniques. We report 
the results of these measurements and their implica- 
tions with respect to the design of high performance 
superscalar processors. 

1 Introduction 

Speculative execution and dynamic scheduling are 
two promising techniques for achieving high perfor- 
mance single-instruction-stream execution. These 
techniques however, involve modifying architectural 
machine state before it is known if such modifications 
are dictated by the correct sequential execution of the 
program. Implementation of these techniques requires 
management of the machine state such that correct ex- 
ecution can be guaranteed. We term any such mecha- 
nism a state maintenance mechanism. 

State maintenance mechanisms provide for correct 
execution at the cost of various hardware support 
structures as well as possible performance degrada- 
tion. To. assess the performance implications of vari- 
ous state maintenance mechanisms, we model the ex- 
ecution of four integer benchmarks from the SPEC89 
suite. We have measured the performance of one ma- 
chine configuration under a variety of state mainte- 
nance assumptions. 

Three basic approaches to state maintenance are 
modeled in this study: Reorder Buffer [l], History 
Buffer [l], and Checkpointing [2]. Performance differ- 

ences among the three techniques arise from the time 
taken for each mechanism to recover from a branch 
misprediction. Checkpointing incurs the lowest mis- 
prediction penalty and thus achieves the highest av- 
erage parallelism (instructions per cycle, IPC). The 
reorder buffer technique incurs, on average, an ad- 
ditional 1.6 to 2.7 cycle misprediction penalty (over 
checkpointing), for a decrease in average parallelism 
of between 4.0 and 7.7 percent. A moderately aggres- 
sive history buffer approach suffers an average of 1.6 to 
1.9 additional cycles per misprediction, for a decrease 
in parallelism of 4.8 to 9.1 percent. 

This paper is organized into five sections. Section 
2 discusses the microarchitectural model of execution 
and the state maintenance mechanisms that we have 
simulated. Section 3 describes our experiments: the 
simulator, the benchmarks, and the machine config- 
urations tested. Section 4 reports the results of our 
simulations and discusses the influence of state main- 
tenance on performance. Section 5 offers some con- 
cluding remarks. 

2 Model of Execution 

The microarchitecture modeled in this study is a 
dynamically scheduled, speculative execution engine 
designed to exploit instruction level parallelism. We 
call this model the High Performance Substrate (HPS) 

PI- 
Execution in HPS flows as follows: Each cycle mul- 

tiple instructions are issued, and, using the informa- 
tion in the Register Alias Table, the instructions are 
merged into node tables, much like the Tomasulo algo- 
rithm merges operations into the reservation stations 
of the IBM 360/91 [S]. Associated with each instruc- 
tion (node) are the source operands for that instruc- 
tion (or identifiers for obtaining the operands), and 
destination information. Each node is stored in a node 
table independent of and decoupled from all other 
nodes currently ‘awaiting dependencies in the datapath 

70 
1072-4451/93$3.00Q1993IEEE 



until all its operands are available, at which point the 
node is eligible for firing. Each cycle ready nodes are 
fired, i.e. shipped to pipelined function units for exe- 
cution. Each cycle, function units complete execution 
of nodes and distribute the results to nodes waiting 
for these results, which then may become firable. 

For memory operations, a node is firable only if all 
of its operands are available, it is not dependent on any 
previous memory operations (flow dependence), and 
there are no previous memory operations to unknown 
addresses that may interfere with this operation. This 
dynamic memory disambiguation requires that, in the 
case of load operations, no previous stores are to un- 
known addresses. Likewise, for store operations, any 
previous loads or stores to unknown addresses will stall 
the store operation. 

A separate node table exists in front of each func- 
tion unit. Instructions are routed at issue time to a 
node table that feeds a function unit capable of per- 
forming the operation. Since each function unit has 
its own independent node table, scheduling is limited 
only to nodes residing in that node table thus easing 
the hardware requirements for scheduling and routing 
between node tables and function units. 

2.1 State Maintenance 

Out-of-order execution makes the support of pre- 
cise interrupts more difficult. In fact, early machines 
that implemented out-of-order execution (comple- 
tion) did not support precise interrupts (e.g. CRAY I, 
IBM 360/91 floating point unit). The difficulty lies in 
restoring the machine to a state such that all instruc- 
tions which precede the offending instruction in the 
dynamic I-stream have updated the machine state, 
while none of those following it have. 

Another difficulty arises from the employment of 
speculative execution. Dynamic branch prediction al- 
lows the machine to speculatively bring new instruc- 
tions into the datapath before it has been confirmed 
that they are to be executed. While this allows for a 
larger “window” of instructions in which to find use- 
ful work, speculative execution must be supported by 
a mechanism to remove instructions that were erro- 
neously issued. 

Since exceptions are rare, the performance implica- 
tions of a recovery technique for exceptions are mini- 
mal. Branch mispredictions, on the other hand, occur 
far more frequently and significantly impact the per- 
formance of wide issue machines. This study focuses 
on the branch misprediction recovery time and its im- 
pact on overall performance. 

Several techniques have been proposed in the liter- 

ature to provide support for machine state recovery of 
speculative, out-of-order execution engines. 

2.2 Reorder Buffer 

Smith and Pleszkun [l] proposed a state mainte- 
nance mechanism that involves updating the archi- 
tecturally visible register file strictly in-order, while 
allowing execution to proceed out-of-order. This is 
accomplished by maintaining a FIFO queue of instruc- 
tions in the order in which they were issued. When an 
instruction completes execution, it places the result in 
the appropriate slot in the FIFO queue rather than in 
the register file. The queue, in turn, updates the reg- 
ister file in-order. Exceptions are handled when the 
offending instruction reaches the head of the queue. If 
the instruction has created an exception, by the time it 
reaches the head of the queue, all previous instructions 
have updated the register file, while no subsequent in- 
structions have. Thus exceptions are precise. 

This approach can also be applied to misprediction 
recovery. When a mispredicted branch reaches the 
head of the buffer, the rest of the buffer is flushed and 
issue proceeds along the correct path. This behavior 
is modeled for the reorder buffer in this study. 

It should be noted that another reorder buffer- 
based technique can be used that allows for mispre- 
diction recovery to proceed immediately upon branch 
resolution. This technique will achieve the same per- 
formance as the checkpointing approach modeled in 
this study. The difficulty with this approach is that 
it requires a wide content addressable search with a 
rotating priority mechanism. The rotating priority 
mechanism is necessary since we want only the most 
recent result for a given register. Since several slots 
may contain results for the same architectural register, 
a simple CAM match is not sufficient. Furthermore, 
since the reorder buffer acts as a queue, the priority 
mechanism must allow for a rotating “start” position, 
or the FIFO must be implemented as a true hardware 
queue using shift registers. 

2.3 History Buffer 

Another technique proposed by Smith and Pleszkun 
is the history buffer. With this technique, instructions 
are free to update the register file as they complete 
execution, however, the previous value of the register 
is maintained in a LIFO queue. This LIFO containing 
the “history” of the register file is arranged, as in the 
reorder buffer, with a slot for each instruction in the 
order in which they were issued. The head of the queue 
contains the oldest instruction, and when it completes 

71 



it can be removed (“retired”) from the queue (i.e. the 
contents of the queue entry are discarded). When an 
instruction which has caused an exception reaches the 
top of the queue, the register file is reconstructed by 
copying the history buffer back into the register file 
beginning with the tail. Since we write back into the 
register file from tail to head, multiple writes to the 
same architectural register are correctly resolved. 

This same approach can be taken to support branch 
misprediction recovery by “undoing” only those in- 
structions issued since the offending branch. The per- 
formance penalty associated with this method arises 
from the cycles spent writing previous values back into 
the register file. 

2.4 Checkpointing 

Checkpointing [2] is an alternative state mainte- 
nance mechanism that protects vulnerable machine 
state at certain key points in the instruction stream. 
A “checkpoint” is a point in the dynamic instruction 
stream at which the machine state is preserved in some 
way so as to allow efficient restoration of the architec- 
turally visible machine state. If checkpoints are es- 
tablished at strategic points in the instruction stream, 
such as at each branch, then the machine can quickly 
recover from branch mispredictions. Furthermore, as 
with the other recovery mechanisms, checkpointing 
can be used to support precise interrupts by backing 
the machine to the nearest previous checkpoint and 
then single stepping instruction issue until the offend- 
ing instruction is reached again. This involves per- 
forming extra work, but since exceptions are rare, this 
is not likely to degrade performance noticeably. 

The implementation of checkpointing involves tag- 
ging checkpointed entities (e.g. physical registers) 
with a bit field which indicates the checkpoints in 
which the entry “exists.” This bit field has a single 
bit for each checkpoint that the machine is capable 
of supporting. If the bit corresponding to the cur- 
rent checkpoint is set, then this physical register is 
the most recent reference to the associated architec- 
tural register. By manipulating the contents of this bit 
field, the register instance can be propagated to sub- 
sequent checkpoints or can be overwritten (by clearing 
the current bit). Backing up the machine requires re- 
turning to a previous set of physical-to-architectural 
mappings. This is accomplished by treating a previ- 
ous checkpoint as the current one. Similarly, retiring 
a checkpoint that is no longer needed simply requires 
clearing the corresponding bit in these bit fields. A 
more detailed explanation of the new checkpointing 
as applied to the register file can be found in [7]. 

2.5 Response and Recovery Time 

There are essentially two components of the per- 
formance impact of recovery mechanisms. The first is 
the time from the determination of the misprediction 
to the time when recovery begins. We call this time 
the “response time” for the misprediction. The other 
relevant time is the number of cycles actually spent 
performing the recovery. We call this the “recovery 
time.” 

The performance of the recovery models differ in 
the values for these two quantities. Checkpointing is 
the most aggressive in terms of responding to and re- 
covering from mispredictions. As explained above, a 
reorder buffer delays response until the branch reaches 
the head of the queue, but then immediately recovers. 
A history buffer, on the other hand, responds imme- 
diately but requires zero or more cycles to recover. 

It is important to point out that the performance 
implications of these techniques are investigated only 
as they affect the register file. Use of these techniques 
to protect other structures is not considered here. The 
operation of the base machine in terms of issue con- 
straints, window size, etc. does not vary - only the 
penalties associated with state recovery. 

3 Experiments 

3.1 Benchmarks 

The results presented in this paper are for four inte- 
ger programs from the SPEC suite: eqntott, espresso, 
gee, and li, compiled for and run under the MS8000 in- 
struction set architecture. The benchmarks were com- 
piled using Diab Data C Rel. 2.4 compiler with all 
optimizations turned on. All benchmarks were run 
unchanged with the following exception: cpp is not 
called in eqntott, gee was run without cpp and used 
the output of the preprocessor as the input file. 

Table 1 shows instruction classes and their simu- 
lated execution latencies. Each instruction class is 
listed with its execution latency (in cycles), and a de- 
scription of the instructions that belong to that class. 

3.2 Machine Configurations 

The machine configuration simulated is listed in Ta- 
ble 2. The machine is specified by its set of function 
units. The datapath contains eight pipelined func- 
tion units each capable of servicing different classes 
of instructions. The first three function units are ca- 
pable of performing load/store, bit field, and integer 
operations. The fourth function unit can perform bit 

12 



eled in this study are: 
Instruction Exe- 

cution 
Description 

Table 1: Instruction Classes and Latencies 

Function 
unit 
1 
2 
3 
4 
5 
6 
7 
8 

Cache 
I Cache 
D Cache 

Instruction Classes 

Load/Store, Bit Field, Integer 
Load/Store, Bit Field, Integer 
Load/Store, Bit Field, Integer 
Bit Field, Integer 
Divide, Integer 
Multiply, Integer 
FP Add, Integer 
Branch, Integer 

Size 
16k 
16k 

Table 2: Machine Configuration 

field and integer operations. The fifth, sixth and sev- 
enth FUs perform divides, multiplies and adds respec- 
tively, as well as integer operations, and the eighth FU 
performs branches and integer operations. Thus, all 
function units are capable of handling simple integer 
operations as well as another class of instructions. 

3.3 Simulation Process 

In contrast to previous performance studies, which 
typically employ tracedriven simulation, this study 
employs “full execution” simulation. The simulator 
reads in the executable image of the benchmark and 
simulates execution of a dynamically scheduled ma- 
chine. The actual contents of registers and memory 
are maintained and cycle by cycle simulation of exe- 
cution of the benchmark is performed. The ability to 
pursue mispredicted paths and allow them to interfere 
with execution gives rise to a more accurate simula- 
tion. This increased accuracy comes at the expense of 
increased simulation time of roughly three times that 
of trace-driven simulation. 

Some relevant characteristics of the machine mod- 

Separate Instruction and Data caches are explic- 
itly modeled in the simulator. 

Dynamic memory disambiguation is performed. 
Previous loads from unknown addresses will stall 
all subsequent stores until the load address has 
been resolved, and previous stores to unknown 
addresses will stall subsequent loads and stores. 

All function units are fully pipelined (i.e. able to 
initiate a new operation each cycle) and are mu- 
tually independent. The function unit latencies 
we used are given in Table 1. 

When a trap is encountered, the machine being 
simulated must stop issue, wait for all instructions 
currently in the window to complete, and then 
execute the trap instruction. 

Branch Prediction - As branches are encountered, 
a prediction is made baaed on the history of that 
branch combined with dynamically gathered in- 
formation 1121. The machine proceeds with exe- 
cution along the predicted path. This prediction 
is compared to the real outcome as determined by 
execution of the branch instruction. In the event 
of a misprediction, appropriate actions are taken 
in order to perform recovery of the machine state. 

There are several key parameters that define the 
recovery model: 

Delay until Head - This flag indicates that the 
“response” to the branch misprediction is delayed 
until the branch reaches the head of the queue 
(i.e. all previous instructions have retired). 

Delay for Issue Cycles - This parameter assigns 
the “recovery” penalty to be equal to the num- 
ber of issue cycles since the offending branch was 
issued. “Issue cycles” are cycles in which one or 
more instructions were issued. Stalling issue for 
events such as an instruction cache miss, results 
in no “issue cycles.” 

Delay for Register Writes - This flag results in 
a “recovery” time equal to the number of cycles 
needed to write the required number of values 
back to the register file. The number of writes 
required is a function of the number of instruc- 
tions (which write to registers) that have been 
issued since the offending branch. This number 
is modified by the options listed below. 

73 



Remove Dupes - This option reduces the number 
of register writes that have to occur in order to 
accomplish complete recovery by eliminating du- 
plicate writes to the same architectural register. 

Only Ready Values - This option further re- 
duces register writes by only writing back in- 
stances where the value of the register has been 
produced and distributed already. 

4 Simulation Results 

The performance figures 1 through 8 plot the per- 
formance, given in instructions retired per cycle (IPC), 
for various recovery models and benchmarks. Each 
chart shows the running (cumulative) average IPC for 
each variation of the maintenance mechanism for the 
first hundred million instructions retired, except for 
Gee compiling dbxouti, which runs to completion in 

46 million instructions. The curve labeled “History 
Buffer” is a machine that immediately responds and 

recovers according to the “Delay for Register Writes” 
option described above. 

4.1 The Basic Recovery Mechanisms 

The performance of the three basic recovery mech- 
anisms are shown in figures 1 through 4. The curves 

plot the cumulative averages of the IPC for the first 
execution region of the benchmarks. The relative per- 
formance of the different mechanisms is remarkably 
consistent across the benchmarks. The reorder buffer 
and the history buffer achieve roughly equivalent per- 

formance for the four benchmarks. Checkpointing out- 
performs the other techniques by a modest but con- 
sistent 4 to 9 percent. 

Fluctuations in IPC that are common to all three 

models indicate characteristics of the region of execu- 
tion that are independent of recovery efficiency. There 
are, however, regions of several of the benchmarks that 
favor one mechanism over another. In Eqntott for in- 
stance, a reorder buffer performs better than a history 
buffer during the early stages of execution (the first 1.5 
million instructions) but then underperforms for the 

rest of the run. 
To better quantify the performance differences in 

these models, table 3 gives the average delay per mis- 
prediction for the different benchmarks for the first ten 

million instructions. The checkpointing model has val- 
ues of zero for both delays. The history buffer model is 
the column labeled “Imm: Inst.” The first number is 

the additional time taken to “respond” to a mispredic- 
tion. The second number is the “recovery” time. The 

l- 
- clmkpotig 
--- RbordaBuffa 
a.... HistnyBufk 

01 I I I I I I I I I 1 
0 10 u) 30 40 SO 60 70 80 90 1M) 

hs!ndo~ Retied (millions) 

Figure 1: Eqntott 

- alcxkpointing 

--- ReorderBuffa 
..a.. HistoryBuffa 

0 I I I I I I I I I 1 
0 10 20 30 40 50 60 70 80 90 100 

IIX&II~O~ Retired (miUions) 

Figure 2: Espresso 

74 



- Glcckpoiiting 
--- ReorduBuffa 

. . * * * History Buffa 

01 I I I I I I I I I 

0 5 10 15 24l 25 30 35 40 45 

Instructions Retied (millions) 

Figure 3: GCC 

- alecLpointing 
- - - Reorder Buffea 

* - - . * History Buffa 

0 I I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Iwt~ctiom Retired (millions) 

Figure 4: Xlisp 

sum of the two numbers gives the average number of 
cycles spent per misprediction above and beyond the 
time taken to resolve the branch. 

4.2 History Buffer Variations 

Figures 5 through 8 show the performance for sev- 
eral variations of the history buffer approach. For 
comparison purposes, the graphs also include the 

curve showing the performance of the checkpointing 
model. Each curve is labeled with a notation indicat- 
ing the parameter settings for that particular model. 
The first word identifies the “response time.” “Head” 
indicates that response is delayed until the branch 
reaches the head of the queue. “Imm” indicates that 
the machine immediately responds. The rest of the no- 
tation describes the recovery time. “Cycle” indicates 
that the machine delays for the number of issue cycles 
since the branch was issued. “Inst” identifies recovery 
as a function of the number of instructions that have to 
be undone (see Delay for Register Writes, above) and 
can be further modified by “No Dupes” and “Ready 
Only” as above. Due to time limitations, only the first 
ten million instructions are simulated for these mod- 
els, however the performance shown is consistent with 
test runs up to one hundred million instructions. 

The history buffer variations show a much wider 
range of performance. The best history buffer mecha- 
nism outperforms the base history buffer by 24 to 30 
percent. Once again, the performance of the different 
variations is consistent across the four benchmarks. 

With the exception of history buffers that recover 
based on “issue cycles” since the offending branch was 
issued, the relevant data that affects recovery time 
are the number of register writes that need to be per- 
formed to accomplish recovery. Figures 9 through 11 
show histograms of the number of values far the gee 
benchmark that need to be written back to the regis- 
ter file for recovery using the different history buffer 
techniques. The reduction of the number of writes 
results in the performance increase in the more ag- 
gressive models. 

5 Concluding Remarks 

An efficient state maintenance mechanism allows 
for more aggressive exploitation of instruction level 
parallelism by providing support for speculative and 
out-of-order execution. Any mechanism however 
comes at the expense of hardware and design com- 
plexity. We have investigated the performance impli- 
cations of a variety of mechanisms. 

Checkpointing provides the most aggressive ap- 

75 



Checkpointing 
(Imm: Inst. No Dupes, Ready only) 
(hnm: Inst, No Dupes) 
(Imm: Inst) 
(Imm: Cycle) 
(Head: Inst. No Dupes) 
(Head: Inst) 
(Head: Cycles) 

01 I I I I I I I I I 
0 1 2 3 4 6 7 8 9 10 

Instructions Retired (millions) 

Figure 5: Eqntott - History Buffer Variations 

3 r 

0 Checkpointing 
l (Imm: Inst, No Dupes, Ready only) 
0 (Imm: Inst, No Dupes) 
m (Imm: Inst) 
A (Imm: Cycle) 
A (Head: Inst. No Dupes) 
0 (Head: Inst) 
+ (Head: Cycles) 

01111111111 
0 1 2 3 4 6 7 8 9 10 

Instructions Retired (millions) 

Figure 6: Espresso - History Buffer Variations 

76 



0 Checkpointing 
. (Imm: Inst, No Dupes, Ready only) 

0 (Imm: Inst, No Dupes) 

n (Imm: Inst) 

b (Imm: Cycle) 
A (Head: Inst. No Dupes) 

0 (Head: Inst) 
l (Head: Cycles) 

) I I I I I I I I I 

0 1 2 3 4 6 7 8 9 10 

1 

Instructions Ret&d (millions) 

Figure 7: GCC - History Buffer Variations 

0 

. 

Checkpointing 
(Imm: Inst. No Dupes, Ready only) 

(Imm: Inst, No Dupes) 

(Imm: Inst) 
(Imm: Cycle) 

(Head: Inst, No Dupes) 

(Head: Inst) 
(Head: Cycles) 

0 I I I I I I I I I 

0 1 2 3 4 6 7 8 9 10 

Instructions Retired (millions) 

Figure 8: Xlisp - History Buffer Variations 



Figure 9: GCC - Register Writes for HB Recovery - All Instructions 

Figure 10: GCC - Register Writes for HB Recovery - Remove Dupes 

Figure 11: GCC - Register Writes for HB Recovery - Only Ready Values 

_ Benchmark ROB (Head: Cycles ) (hm: Cycles) (Imm: Inst) (No Dupes) (Ready Only) 1 

Eqntott 2.99 + 0 3.00 + 5.32 0 + 5.33 0 + 2.07 0 + 1.01 0 + 0.95 
Espresso 1.71 + 0 1.71 + 3.90 0 + 4.09 0 + 1.52 0 + 0.98 0 + 0.64 
Gee 1.99 + 0 1.97 + 4.09 0 + 4.37 0 + 1.62 0 + 1.09 0 + 1.04 
X&p 1.55 + 0 1.55 + 4.21 0 + 4.39 0 + 1.63 0 + 1.11 0 + 1.02 

Table 3: Average additional delay per mispredicted branch (response + recovery) 

78 



preach to branch misprediction recovery. This gives 
rise to a modest but consistent performance improve- 
ment over other mechanisms. The performance of a 
reorder buffer based machine lags by 4 to 8 percent, 
while a moderately aggressive history buffer based ma- 
chine lags by a similar 5 to 9 percent. Variations of 
the history buffer approach result in a wider range of 
performance differences of 24 to 30 percent. 

The results presented here are for a wide issue 
(eight) machine with a large window. This aggres- 
sive machine was chosen to allow enough “room” to 
isolate the recovery mechanism’s impact without hav- 
ing other bottlenecks unnecessarily limit performance 
and thus cloud the results. We plan on exploring other 
machine configuration spaces to investigate the effect 
of state maintenance on different window sizes and 
machine widths. 

Acknowledgement 

This paper is one result of the HPS Architecture re- 
search that we are doing at Michigan. The support of 
Motorola, Intel, Hewlett Packard, Scientific and En- 
gineering Software, and HaL is greatly appreciated. 
In addition, NCR has been continuously enthusiastic 
about our work. The support of Jim Pike, including 
the gift of two NCR Tower multiprocessors which we 
have used to perform our simulations, is also greatly 
appreciated. Finally, we acknowledge that we consider 
ourselves very fortunate in having the opportunity to 
discuss ideas about the HPS execution model with the 
rest of our research group at Michigan. 

References 

PI 

PI 

[31 

J. E. Smith, and A. R. Pleszkun, “Implemen- 
tation of Precise Interrupts in Pipelined Pro- 
cessors” Proceedings of the 12th Annunal Inter- 
national Symposium on Computer Architecture, 
(June 1985)) pp. 36-44. 

W.W. Hwu and Y.N. Patt, “Checkpoint Repair 
for Out-of-order Execution Machines.“, Proceed- 
ings of the 14th Annual International Symposium 
on Computer Architecture, (June 1987)) pp. 1% 
26. 

Motorola Inc. MC88100 RISC Microprocessor 

PI 

[51 

[61 

PI 

PI 

PI 

WI 

User’s Manual. Phoenix AZ.: Motorola Inc., 
1991. 

Y.N. Patt, W. Hwu, and M. Shebanow,e “HPS, 
A New Microarchitecture: Rationale and Intro- 
duction.“, Proceedings of the 18th Annual Work- 
shop on Microprogramming, (December 1985)) 
pp. 103-108. 

Y.N. Patt, W. Hwu, and M. Shebanow, “Criti- 
cal Issues Regarding HPS, A High Performance 
Microarchitecture.“, Proceedings of the 18th An- 
nual Workshop on Microprogramming, (Decem- 
ber 1985)) pp. 109-116. 

W. Hwu and Y.N. Patt, “HPSm, a High Perfor- 
mance Restricted Data Flow Architecture Hav- 
ing Minimal Functionality.“, Proceedings of the 
13th Annual International Symposium on Com- 
puter Architecture, (June 1986)) pp. 297-307. 

M. Butler and Y. Patt, “An Area-Efficient Reg- 
ister Alias Table for Implementing HPS,” Pro- 
ceedings of the 1990 International Conference on 
Parallel Processing, August 1990, pp. 611-612. 

R.M. Tomasulo, “An Efficient Algorithm for Ex- 
ploiting Multiple Arithmetic Units.“, IBM Jour- 
nal, Vol. 11, (January 1967)) pp. 25-33. 

W.M. Johnson, “Super-Scalar Processor Design”, 
Technical Report No. CSL-TR-89-383, Stanford 
University, (June 1989). 

G. S. Sohi and S. Vajapeyam, “Instruction Is- 
sue Logic for High-Performance Interruptable 
Pipelined Processors.“, Proceedings of the 14th 
Annual International Symposium on Computer 
Architecture, (June 1987)) pp. 27-34. 

[ll] M. Butler, T. Yeh, Y. Patt, M. Alsup, M. She- 
banow, and H. Scales, “Single Instruction Stream 
Parallelism Is Greater than Two,” Proceedings of 
the 18th International Symposium on Computer 
Architecture, (May 1991)) pp. 276-286. 

[12] T-Y Yeh and Y.N. Patt, “Two-Level Adaptive 
Branch Prediction”, The 24th ACM/IEEE Inter- 
national Symposium and Workshop on Microar- 
chitecture , (Nov. 1991)) pp. 51-61. 

79 


