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ABSTRACT 

A proven method of obtaining high performance for 
Prolog programs is to first translate them into the 
instruction set of Warren’s Abstract Machine, or W-code 
[l]. From that point, there are several models of execution 
available. This paper describes one of them:- the 
compilation of W-code directly into the vertical microcode 
of a general purpose host processor, the NCR/32-000. The 
result is the fastest functioning Prolog system known to 
the authors. We describe the implementation, provide 
benchmark measurements, and analyze our results. 

1. Introduction 

Substantial current interest in the high performance 
execution of Prolog programs demands investigation into the 
various alternative models of execution. The classical scheme, 
implemented by Warren [II among others, involves translating 
the Prolog program first to an intermediate form usually 
referred to as the instruction set of Warren’s Abstract 
Machine, and from there to the machine language (ISP) of the 
host processor. Machine instructions are then interpreted by 
host microcode, which controls the data path of the host 
microengine. This process is shown in figure 1. 

Since three levels of transformation exist between the 
Prolog application program and the host microprogram, it is 
reasonable to ask what improvement can be obtained by 
eliminating one or more of these levels of transformation. One 
approach employed by Dobry et. al [2] (see figure 2), was to 
eliminate the general purpose host ISP level and translate the 
W-code directly into the microcode of a special purpose host 
designed specifically to interpret W-code instructions. The 
performance advantage of this approach is significant, as will 
be discussed in section 6. The disadvantage, obviously, is the 
cost of a special purpose processor. 

An alternative approach, the subject of this paper, is-to 
again eliminate the ISP level translation, but to compile 
directly into the microcode of a general purpose host. (Figure 
2 also illustrates this scheme). This paper describes the results 
of one implementation of this approach, using the vertically 
microprogrammable NCR/32-000 microprocessor as the host 
microengine. 
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This paper is divided into seven sections. Section 2 
provides a short overview of the hardware and software 
elements that comprise our system; Section 3 discusses the 
Warren Abstract Machine mapped onto our host system. 
Section 4 describes the host hardware in more detail. Section 
5 describes the implementation. Section 6 delineates the 
measurements which we performed with our system, compares 
these measurements to the alternative schemes shown in 
figure 2, and analyses the results of this comparison. Section 7 
offers a few brief concluding remarks. 

2. Am Overview of the System 

2.1. Hardware 

We carried out the implementation on an NCR 9300 
system, containing a 64K x 16 writable control store, two 
megabytes of memory, and the NCR132-000 processor (see 
figure 3). The NCR/32-000 is a 32-bit NMOS VLSI 
microprocessor. It executes microinstruction8 fetched from 
control store, communicating with it over the 16-bit IBUS. 
Communication with main memory takes place over a 32-bit 
address/data bus, the PMBUS. The 9300 system is connected 
to a device port on a VAX 11!750, tuning 4.3 BSD UNIX. 

The NCR 9300 

Compiled progrurrr are downloaded 
from the VAX into WCS, and executed 
by the NCR/32000 

figure 3 

2.2. Software 
Three significant pieces of software are used in 

transforming Prolog programs to executable NClU32-000 
microcode: a Prolog compiler, a microcode compiler, and an 
assembler. The entire translation process, from Prolog to 
microcode, is shown in figure 4. 

The Prolog compiler takes Prolog programs and compiles 
them to produce W-code. This W-code is translated into 
NCR/32000 microinstructions by the microcode compiler. The 
resulting file is then assembled into a binary object file by the 
microcode assembler, which is downloaded into control store. 

The Prolog compiler was developed at Berkeley as a 
Master’s Thesis by Peter Van Roy [3]. It is written in Prolog, 
and is invoked from a Cprolog interpreter under 4.3 BSD 
UNIX. Considerable documentation on the compiler is 
available elsewhere [33 , 141. 

The second piece of software, the microcode compiler, is 
the heart of the Prolog implementation. It is written in C, and 
expands the macroinstructions produced by the Prolog compiler 
into NCR/32-000 microinstructions. Each W-code instruction 

corresponds to a sequence of NCR/32-000 microoperations. The 
microcompiler reads in a W-instruction and prints out the 
appropriate microcode flow. Thus the output of the 
microcompiler is an ascii file of NCR/32-000 microinstructions 
corresponding to the W-coded version of the original Prolog 
program. 

The third piece of software is the microcode assembler. It 
is written in C, and transforms the output of the microcode 
compiler into an executable file. This file may then be 
downloaded into the control store of the NCR/32-000 and 
executed. 

Compilation and 
Assembly source prclgram 

PROLOG 

Prolog x Compiks Protog 
Compiler into W-code 

intern form 

figure 4 

Some of Warren’s instructions invoke subroutines that 
perform basic Prolog functions (for example, unification). In 
addition to providing these subroutines, any implementation of 
Prolog must also support a minimal subset of builtin functions 
that are not part of the pure logical language. The microcode 
flows for all these operations are stored in a file called 
‘basicsncr”. This file is written in NCR/32-000 microcode, 
since most builtin functions cannot be written with Warren’s 
instruction set. It must be resident in WCS whenever Prolog 
programs are executed. 

The builtin function file takes up 3% of WCS; the space 
taken up by the various classes of routines within the file is 
shown in table 1. 

Percent of Reserved Control Store 
Area Occupied By Builtin Functions 

output routines 

Table 1 

Arithmetic builtins include the usual arithmetic and 
comparison operations. Because arithmetic can be performed 
on expressions, the arithmetic category of builtins also includes 
code for evaluating structures. The set and access builtins are 
simple versions of the Prolog functions “assert” and “retract”. 
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Finally, there must also be a program running on the 
VAX while Prolog programs are being executed on the 
NCR/32-000. This program is written in C, and is called 
“ncrmon”. It monitors the execution of compiled Prolog 
programs on the NCR/32-000, assisting in I/O, making 
performance measurements, and providing a user interface for 
the system. 

3. The Abstract Resources of Warren’s Machine 

The Warren machine [l] is an abstract architecture; its 
abstractions must be mapped onto the concrete resources of a 
concrete machine (in this case the NCR/32-000 micromachine). 
These abstractions include data types, special registers, and 
special areas of memory. This section explains the purpose of 
each of these and how they are used. 

3.1. Data Types 

Prolog manipulates four kinds of data types: structures, 
lists, variables, and constants. The type of a data word is 
indicated by an appropriate tag. Warren’s machine 
specification leaves the representation of each type unspecified; 
thus other alternatives exist to the scheme shown here. 

3.1.1. Constants 

Constants can be of several types, including integers, 
atoms, floating point values, and the special constant NIL. 
Small integers are stored directly in the data word itself, while 
atoms and floating point values contain pointers to the 
appropriate item in memory. 

3.1.2. Variables 

A variable is simply a data word with the variable tag in 
the most significant byte, whose contents are an address of 
some other data word. Unbound variables are represented by 
pointers to themselves. 

3.1.3. Lists 

Lists are represented by a word with the list tag, pointing 
to the first entry of the list. List entries are one word long; our 
implementation of them uses &-coding to improve memory 
efficiency [5]. Conventional list representation uses two words 
for each entry: the car, which contains the list entry itself, and 
the cdr, which points to the remainder of the list. With cdr- 
coding, if the cdr cell corresponding to a list entry represented 
conventionally would point to the next word in memory, then 
that cell is omitted. When this is not the case. the cdr cell is 
left in memory, with a bit set to indicate that the word is an 
explicit cdr cell. This bit is called the cdr bit. Thus, to 
determine the location’ of the next entry of a list, one simply 
examines the next contiguous word in memory. If the cdr bit 
is off, then that cell is the next entry. If it is on, then the 
location of the next entry is pointed to by the contents of the 
cell. 

3.1.4. Structures 

Structures are simply lists with principal functors. They 
are represented by a word with the structure tag, whose 
contents are a pointer to the principal functor of the structure, 
followed by the arguments of the structure. 

3.2. Special Registers 

The current state of a Prolog computation on Warren’s 
machine is defined by certain registers containing pointers to 
memory. Any memory subsystem supporting Warren’s 
abstract machine must have separate address spaces for data 
and code; with one exception, the special registers point into 
the data space. This memory space is in turn divided into four 

areas: the heap, the stack, the trail, and the PDL. The purpose 
of each will be explained in more detail after the registers are 
discussed. 

Warren’s machine makes use of the following special 
registers: 

Al - 
P: 
CP: 
E: 
B: 
TR: 
H: 
HB: 
S: 

An: the Argument registers 
the Program counter 
the Continuation Pointer 
the Environment pointer 
the Backtrack pointer 
the Trail pointer 
the Heap pbinter 
the Heap Backtrack pointer 
the Structure pointer 

The purpose of each of these registers is explained below. 

Al-An 

P 

CP 

E 

B 

TR 

H 

HB 

S 

3.3. 

The Argument registers : contain the arguments of a 
Prolog goal. For example, to execute the Prolog query 
‘d(4,5,6)?“, registers Al, A2, and A3 would be loaded 
with the tagged words representing the constants 4, 5, 
and 6 respectively, and then the code for procedure d 
would be entered. For our implementation of Prolog, n = 
8. 

The Program pointer: contains the address of the next 
instruction to execute. 

The Continuation Pointer: contains the address of the 
next instruction to execute should the current goal 
succeed. For example, when execution begins for the code 
for procedure “h” in the clause “AX) :- g(X), h(X), i(X)“, 
the CP would contain the address of the code 
corresponding to the call to i. In other words, the CP 
functions like a return pointer for a subroutine call. 

The Environment pointer: contains the address of the last 
“environment” pushed on the stack. (Environments will 
be explained shortly). 

The Backtrack pointer: contains the address of the last 
“choice point” pushed on the stack. (Choice points will 
also be explained shortly). 

The Trail pointer: points to the top of the trail. 

The Heap pointer: points to the top of the heap. 

The Heap Backtrack Pointer: the top of the heap at the 
time the last choice point was placed on the stack (i.e. the 
value of H corresponding to B). 

The Structure Pointer: Used to address elements of 
structures and lists on the heap. Points to the current 
element of a structure or list being addressed. 

Data Memory Allocation 

The data memory is partitioned into four stacks: the 
control stack, the heap, the trail, and the push-down list, or 
PDL. 

3.3.1. The Control Stack 

The control stack (hereafter called “the stack”) is the area 
in memory used for storing control information. Two kinds of 
objects may appear on the stack: environments, and choice 
points. 
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3.3.1.1. Environments 

An environment represents the saved state of a’Prolog 
clause: it contains pertinent register .values, and what are 
known as “permanent” variables. Permanent variables are 
variables needed by more than one goal lin the body of a clause; 
they must be saved so that succeeding goals can access them. 

For example, consider the following Prolog clause: 

AX,Y) :- g(X), h(X,Z>. 

At the beginning of executing the code corresponding to 
this clause, an environment will be allocated for it on the 
stack, and the data word representing the variable X would 
will be stored within it. Thus, after executing the code for the 
procedure g, h will be able to access X by referring to the 
location of X on the stack. X is a “permanent” variable 
because it occurs more than once in a clause, and its last 
occurrence is after the first goal. If its value were not saved in 
an environment on the stack, other goals would not be able to 
reference it. 

By contrast, the clause 

f(X,Y) :- g(X), h(Z). 

has no permanent variables, because the second occurrence of 
the variable X is in the first goal. The clause 

AX,Y) :- g(Z), h(W). 

similarly has no permanent variables, because no goal requires 
access to the variables of another. Formally, a variable is 
temporary if it occurs in at most one goal of a clause, where 
the head is considered part of the first goal. All variables that 
are not temporary are permanent. 

Environments also contain the values of certain registers, 
to enable restoration of the state of a computation when the 
last goal in the clause succeeds. Environments contain the 
following register values: 

CP : where to continue once clause succeeds 
E : location of last environment on stack 
N : size of last environment 
B : location of last choice point 

3.3.1.2. Choice Points 

A choice point is a group of data words containing 
sufficient information to restore the state of a computation if 3 

goal fails, and to indicate the next procedure to try. Choice 
points are placed on the stack by special instructions when 3 

procedure is entered that contains more than one clause that 
can unify with the current goal. For example, as the following 
Prolog program fragment is executed 

g(X) :- RX), h(X, X1. 
g(X) :- a(X), b(X, Y). 

g(X)? 

3 choice point would be placed on the stack when the first 
clause is entered, because should it fail an alternative clause 
exists which is to be tried as well. 

Choice points contain the following register values: 

An: the contents of the argument registers 
E : location of last environment 
CP : address of next clause to execute should this one succeed 
B : location of previous choice point 
TR: the value of the trail pointer when choice point built 
H: the top of the heap when choice point built 
N: the number of permanent variables in the environment 
L: address of next clause to try should current goal fail. 

3.3.2. The Heap 

The heap is the area of data memory used for the storage 
of lists and structures, which are too cumbersome to be kept in 
environments on the control stack. The primary purpose of the 
heap is for the storing of lists and structures. The choice of 
name for this area of memory is unfortunate, because it is 
actually allocated incrementally like a stack, and deallocated 
in variable size blocks. 

3.3.3. The Trail 

When a variable becomes bound during the course of a 
Prolog program, it may become necessary to undo the binding 
when backtracking is done. Thus some method is needed for 
keeping track of all bindings that are to be undone when the 
current goal fails, so that the variables they refer to can be 
unbound again, For example, in the Prolog program 

f(a). 
f(b). 
g(b). 

f(X), g(X)? 

X would first be bound to a, but “g(a)” would have no solution. 
Thus the binding of X to 3 must be undone. X will then unify 
with b, and “g(b)” will succeed. 

A small stack called the trail is used to handle the 
necessary bookkeeping for bindings that will have to be 
undone upon goal failure. This stack is addressed by the TR 
register. When a binding is trailed, 3 pointer to the variable 

just bound is pushed onto the trail, (in the previous example a 
pointer to the variable X), and the TR register incremented. 
Upon goal failure, all variables pointed at by pointers on the 
trail, from the top of the trail down to the previously saved TR 
value in the current choice point, are reset to unbound 
variables. This is done 3s part of the ‘fail’ operation, explained 
in the section on basic operations. 

It should be noted that not all bindings need to be trailed, 
and hence some runtime optimization is possible. Suppose the 
variable being bound is on the stack. If it is located above the 
current choice point (assuming the stack grows upwards) then 
it will be thrown away on goal failure; hence the binding will 
not have to be explicitly undone. Similarly, if the variable 
being bound is on the heap, then if it is located above the 
address in the HB register (assuming the heap grows upwards) 
then it will be discarded on goal failure. Thus whenever a 
binding is made, we compare its address with the appropriate 
register (B or HB). Only if the address is less than the B 
register (for a variable located on the stack) or the H register 
(for variables located on the heap) is the address of the 
variable pushed onto the trail. This reduces both trail space 
and memory traffic, at the cost of extra microcycles when 
trailing bindings. Special comparison logic could further 
reduce this cost. 

3.3.4. The PDL 

The PDL is 3 small stack created for the unification of 
nested structures and nested lists. Consider the problem of 
unifying the lists ‘[a,Cb,c,dl,el’ and ‘[a,[b,c,dl,fl’. Both objects are 
lists, and their first elements match. The second element in 
each object is also a list, and 3s we traverse down it we find 
that each of their elements match. However, elements ‘e’ and 
‘f are now inaccessible. They are pointed to by the cdr cell 
after the sublist ‘[b,c,d]‘, whose address we neglected to save. 
This problem is solved by pushing pointers to points where 
unification of a nested data object is to continue onto a stack; 
in Warren’s machine, this stack is the PDL. When the end of 
a substructure is encountered, the topmost entry on the PDL is 
popped off and unification continues at the point that entry 
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indicates. 

Either depth first or breadth first traversal of nested 
structures is possible. However, since Prolog structures tend to 
be long rather than deep, depth first traversal uses less PDL 
apace and is hence preferable. With depth first traversal, the 
maximum value of the PDL will be the maximum depth of 
nesting of a structure in the program, whereas with breadth 
first it will be the maximum number of arguments of a 
structure or entries in a list. The former tends to be much 
smaller than the latter. 

For more information on Warren’s machine, see 111 , [61. 

4. The NCR 9300 System 

A diagram of our host system, the NCR 9300, is shown in 

4.1. The CPC 

The datapath of the NCR/32000 CPC is shown in figure 
4.2. The CPC is controlled by a vertically encoded 16 bit 
microinstruction, shown in figure 4.3. The G field always 
contains part of the opcode. The H and I fields may contain 
either an extended opcode, or may specify operand selection. 
The J and K fields are register specifiers that determine the 
operands of the instruction. A few instructions require a 
trailing I6-bit literal; this is supplied as the L field. 

The CPC contains sixteen 32bit general-purpose 
registers, referred to collectively as the RSU, or Register 
Storage Unit. Four of these registers are byte-addressable. 
The source or sink of a microinstruction is usually an RSU 
register. These registers are the most imuortant resource of 
the NCW32-000, as-we shall see. figure 4.1.’ The major components of the system are the 

NCW32-000 CPC (Central Processor Chip), the ISU 
(Instruction Storage Unit), and main memory [?I. 

c 

cbck figure 4.1 Optiond ECC 
Cod* Supplied 
by AX 

figure 4.2 

‘The NCR 9300 alao includes an Extended Arithmetic Chip, for floating 
point calculations, and an Address Translation Chip, for virtual memory 
support. These chips were not part of our implementation, and are not shown 
in the figure. 



NC:R/32-000 

Microinstruction Format 

ETIT-I (optional) 
figure 4.3 

The CPC also contains thirty-two special-purpose 
registers, called IRUs, or Internal Register Units. These 
include a builtin stack pointer, an indicator array for 
preserving the results of conditional tests, and jump registers 
for holding branch addresses. 

There are ninety-six other register assignments, external 
to the CPC, called ERUs or External Register Units. (ERU’s 
are not shown in the figure). These units include special 
registers that provide support for indirect accessing of the top 
128 locations of main memory. These locations are referred to 
as the scratchpad; their use will be explained further in the 
section on main memory. 

An instruction is fetched from ISU at the address stored 
in the CR, or control register. The fetched instruction is stored 
in the IR, or instruction register. The G field of the instruction 
is sent from the IR to address a small on-chip nanocode ROM, 
which drives various control points. Other fields of the 
instruction address the RSU to determine which registers, if 
any, are to be used. The outputs of the RSU may be sent out 
to the PMBUS for memory accesses, or sent to the ALU for 
computation. The output of the ALU-may be sent back to the 
CR if it is used for determining the address of the next 
instruction, or it may be used to address the IRU. The results 
of ALU operations affect the indicator array, whose contents 
may be tested with bit patterns supplied from the current 
microinstruction. The result of such a comparison can be used 
to modify the contents of the CR. 

The NCR/32-000 has a three stage pipeline, in which 
instruction fetch, decode, and execution are overlapped. Thus 
the control path includes “skip” logic, to void the pipeline when 
necessary. 

The processor has a 150ns, two-phase clock. 

4.2. ISU 

The ISU, or Instruction Storage Unit, is a 64K x 16 
writahle control store. The CPC accesses the ISU through a 16 
bit ISUBUS, multiplexing addresses and data. To run Prolog 
programs, assembled code is downloaded directly into the ISU, 
for execution by the CPC. 

4.3. Main Memory 

Currently, our system uses 2 megabytes of main memory, 
organized into 32-bit words. The CPC communicates with 
main memory over the PMBUS, a 32-bit address/data bus. If a 
memory location is to be accessed that is not part of the 
scratchpad, its address must be supplied from an RSU specified 
by the microinstruction. Thus for most of main memory, extra 
instructions are required to generate the address and place it 
in the correct RSU. Address generation for the scratchpad, 
however, is faster, as we shall see in the next section. 

5. Allocating the Resources of the NCR 9300 System 

We now show how the concrete resources of our host 
system were used to support the abstractions of Warren’s 
machine. Since the NCR/32-000 has a 32-bit data path, the 
main data element was chosen to be a 32-bit word, with the 
upper byte reserved for the tag. Figure 5 shows the tagging 
scheme used. While this scheme wastes space, it offers the 
advantage of fast determination of the type of a data element, 
using the byte addressing and masking capabilities of the 
NCR/32-000. 

Tagging Scheme 

vAR=xolxmml 
LlST = xlOGUOO0 
STRUCT = xQlOOOO0 
CONST(!NT) = xOO10000 
CONST(ATOM) = xOO11000 

figure 5 

Our 9300 system contains two megabytes of memory, 
used for the trail, the stack, and the heap. Because we 
anticipated needing far more heap space than stack or trail 
space, main memory was allocated according to figure 6. The 
trail grows down, while the stack and the heap grow up. 

Main Memory 
Allocation 

TRAIL 4 

STACK * 

HEM 

l 

.25M 

.25M 

1.5M 

figure 6 

To determine the most efficient way to map Warren’s 
registers onto those of the NCR/32-000, we examined 
approximately 600,000 register references made during 
execution of two benchmark sets of Prolog programs, using our 
Prolog simulator. The first benchmark set is from Warren’s 
thesis 181; we refer to it as the Warren Benchmark Set. The 
second set has been developed at Berkeley for exercising all 
the instructions of Warren’s machine; we refer to it as the 
Berkeley Benchmark Set. Both benchmark sets are shown in 
tables 2 and 3. 
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The Warren Benchmark Set 

Name Task 

nrev reverse 30-element list 

qs4 sort 50-element list 
palin itemize 25element list 
times10 symbolic differentiation 
divl0 II 

log10 0 

ops8 
11 

query extract info from database 

Table 2 

The Berkeley Benchmark Set 

Name Task 

con1 concat [a,b,c] to [d,el 
con6 nondeterministic concat 
hanoi tower of hanoi, 8 disks 
queens queens problem, 4 x 4 board 
prif find all primes < 98 
mutest prove a theorem 
ckt2 design 4-1 MUX using NANDs i 

Table 3 

The percentage breakdown of register references for these 
benchmarks is shown in table 4: 

Register References 

1 An 27.7% 
P 22.1% * 
H 12.8% 
E 7.5% 
B 7.0% 

1 CP,N,S,TR,HB 57~ or less 

Table 4 

* P is the program counter, implicit in the NCR/32000. 

Some registers were needed to hold intermediate results, 
and others to pass parameters to microroutines. Thus the’ 
results in the above table led to the allocation of registers 
shown in figure 7. Registers 0 and 1 were used as parameter 
registers for microsubroutines. Registers 2 and 3 were used for 
temporary values, as were registers E and F. Registers 4 
through 7 were the Warren argument registers Al-A4, while 
the rest of the registers were assigned to the more important 
principal registers of Warren’s machine. 

NCR/32-000 
Register Assignment 

cl zz 
E 2- -s 
141 Al 

1 z 
E 3 - -1 
51 A2 

71 A4 

Ql CP 

Because there are more special registers in Warren’s 
machine than will fit in the NCR/32-000 register file, the 
scratchpad memory of the 9300 was also used. Unlike the rest 
of main memory, which requires an address stored in an RSU 
to specify the desired location, the scratchpad can be addressed 
either indirectly through special ERU’s or directly through a 
field in the microinstruction. Since scratchpad locations do not 
require extra microinstructions to set up the desired address, it 
was treated specially in the implementation, and was allocated 
as shown in figure 8. Locations O-4 are reserved for use by 
ECD, the Extended Console Debugger booted out of PROMS 
when the system is powered up. Location 4 holds the address 
of the base of the stack. Location 5 holds the cut flag, a flag 
needed for implementing the Prolog ‘cut’ operator. Locations 6 
and 7 are the N and S registers, location 8 holds the mode hit 
(used to implement structure copying), and locations 9 and A 
are unused. Location B holds the time of execution of the 
program (used for performance measurements), and locations 
C-F hold the remaining argument registers A5-A8. Finally, 
locations lo-3F are used for the PDL, while 40-5F are used for 
a microsubroutine stack. The topmost location of this stack is 
indicated by IRU26, the NCR/32-000 stack pointer. The 
remaining scratchpad locations are unused. 

Scratchpad 
Allocation 

Bgure 8 

5.1. Two Sample Microcode Flows 
We consider now two examples of microroutines produced 

by the microcode compiler: the routines for the W-code 
instructions “put-variable Yi,Aj” and “call proc,n”. The form 
of “put-variable” instruction discussed here must put an 
unbound variable at location Yi, and place a pointer to it in 
argument register Aj. The “call proc,n” instruction must load 
the number n into the N register, save a pointer to the 
following code in the CP register, clear the cut flag, and branch 
to the address represented by “proc”. 

Both of these flows contain macros referring to various 
abstractions of Warren’s machine; “er” for E register, “al” for 
register Al, and so forth. These macros are translated by the 
microcode assembler into the appropriate bit patterns. To 
avoid confusion, the registers of Warren’s machine will be 
referred to as abstract registers. 



Finally, the microinstructions used in the flows have the 
following meanings: 

aw 
hew 
djor 
lit 
lrhc 

8 

al 

tw 

add word 
boolean exor word 
delayed jump on reg 
literal value 
load right halfword, 

clear left halfword 
store 
store literal 

(used for scratchpad) 
transfer word 

5.1.1. The Flow For ‘put-variable Yi,Xj’ 

Let us assume that i and j are bmoth 1. The microcode 
compiler will accept the instruction “put-variable Yl,Xl” and 
expand it to: 

; put-variable Yl,Xl 

tw er,scregO 
lrhc scregl 
lit 10 
aw scregO,scregl 
tw scregO,al 
tw scregO,scregl 
8 F,scregl 

The first instruction transfers the contents of abstract 
register E to scratch register 0. Next, the hexadecimal literal 
10 is added to it, computing the location of the variable Yl. 
This address is transferred to abstract register al, and to 
temporary register 1 as well. The last instruction stores the 
contents of the specified register at the address stored in the 
register with which it is paired. In the NCR/32-000, odd 
numbered registers are paired with their immediate 
predecessors, so scratch registers 0 and 1 are paired. Thus the 
final instruction stores the address of Y 1 in the location of Yl, 
making Yl point to itself, This is how unbound variables are 
represented. 

5.1.2. The Flow For ‘call proc,n’ 

Let us assume that n = 2. Upon reading “call proc,2”, 
the microcode compiler generates the following: 

; call proc,2 

lrhc scregl 
lit 2 
Sl nr,scregl 

lrhc cpr 
lit $+6 
lrhc scrego 
lit proc 
djor 0,scrego 
bew scregl,scregl 
sl cutflag,scregl 

First, the number 2 is loaded into a temporary register, 
and then stored into abstract register N. Note that since N is 
actually in scratchpad memory, its address does not have to be 
computed ahead of time. An “~1” instruction can be used, in 
which the address is supplied as part of the microinstruction. 
Next, the address of the following code in the I-stream is 
loaded into abstract register CP. The address of “proc”, 
computed by the microassembler, is loaded into scratch register 
0, and then a delayed branch to that address is executed. The 

next two instructions clear scratch register 1, and use the 
resulting zero value to clear the cut flag, stored in scratchpad. 
The delayed branch then takes effect, and control proceeds to 
the address of “proc”. 

Implementing Warren’s machine on the NCR/32-000 
involved four phases: 1) deciding upon the format for the data 
types, 2) allocation of address space and registers, 3) 
construction of microroutines for basic Prolog operations, and 
4) construction of microroutines for the W-instructions. Steps 1 
and 2 were explained in a previous section; here we consider 3 
and 4. 

Two Prolog functions are not directly accessible to the 
user, but are instead called during execution by several W-code 
instructions. These “basic” functions are unification and 
failure. Since unification and backtracking on failure are 
perhaps the two most important features of Prolog and 
consequently lie at the heart of any Prolog implementation, 
these routines were constructed first. We believed that once 
implementing unification and failure was fully understood, the 
rest of the Warren Machine would follow easily. 

The fourth and longest phase of the project was the 
construction and testing of the microroutines for each. of 
Warren’s instructions. Fortunately, the semantics of ‘each 
instruction are well defined, and have been explained in detail 
in previous work [6] , [9]. Constructing the microroutines 
consisted of converting the C routines emulating each 
instruction in [9] into NCR/32-000 microinstructions, using the 
allocation of address space and register resources decided upon 
in phase 2. We parenthetically observe that this translation 
was sufficiently straightforward to suggest investigation of the 
feasibility of automatic construction of the microroutines for 
other target architectures. 

6. Performance Results 

6.1. Measurements 

We used the two sets of benchmarks in table 2 and table 
3 to measure performance. These programs were compiled, 
downloaded, and executed on the NCR/32-000 using the 
software described in section 2. Tables 5 and 6 summarize our 
measurements and compare them to those obtained for two 
other systems: the Berkeley PLM and (where results were 
available) Warren’s compiled Prolog running on a DEC-10. 
Recall that the Berkeley PLM is a special purpose Prolog 
processor that interprets Warren’s instructions directly, while 
Warren’s DEC.10 Prolog executes according to the scheme of 
figure 1. 

#LIPS on Warren Benchmark Set 

Name NCR/32 Berkeley PLM DEC-10 

nrev 
(Is4 
palin 
times10 
divl0 
log10 
ops8 
query 

25K 115K 
35K 174K 
21K 134K 
13K 63K 
11K 55K 
15K 79K 
21K 106K 
89K 367K 

Table 5 

9.3K 
11.2K 
10.5K 
7.7K 
7.8K 
7.8K 
11.2K 
31.9K 

86 



#LIPS on Berkeley Benchmark Set 

Name NCR/32 Berkeley PLM 

con1 53K 305K 
con6 1lOK 465K 
hanoi 59K 310K 
queens 50K 148K 
pri2 7K 191K 
mutest 20K 89K 
ckt2 17K n.a. 

Table 6 

Since performance on the deterministic concatenate 
benchmark seems to be accepted as a standard measure of 
Prolog performance, we have included tables 7 and 8, showing 
the performance on this benchmark for several known and 
planned systems. 

Performance Figures for 
Deterministic Concatenate, 

Existing Systems 

Machine System #LIPS 

NCR/32 
DEC 2060 
SUN-2 
IBM 3033 
VAX-780 
LMI/Lambda 
VAX-780 
VAX-780 
VAX-780 
SYMBLOICS 3600 
PDP 11/70 
Z-80 
Apple-II 

Warren, Compiled 
Warren, Compiled 
Quintus Compiler 
Waterloo 
Macrocoded 
Uppsala 
POPLOG 
M-ROLOG 
C-PROLOG 
Interpreted 
Interpreted 
MicroProlog 
Interpreted 

Table 7 

Performance Figures for 
Deterministic Concatenate, 

Planned Systems 

53K 
43K 
40K 
27K 
15K 
8K 
2K 
2K 
15K 
1.5K 
1K 
.12K 
.OOt3K 

Machine System #LIPS 

Berkeley PLM TTUCompiled 425K 
TICK & WARREN VLSI 415K 
Aquarius I TTLlCompiled 305K 
J 5th Gen HPM Microcoded 280K 

[ SYMBOLICS 3600 Microcoded 1lOK 

Table 8 

The figures in table 8 warrant some explanation. The 
Berkeley PLM measurement is based on simulation, assuming 
a memory as fast as the machine itself. The Tick and Warren 
figure is estimated, and the Aquarius I figure reflects the 
current system with a memory three times slower than that of 
the processor. The remaining results are all estimated. Note 
that the NCR/32-000 implementation compares quite favorably 
with other existing Prolog systems. In fact, this 
implementation is the fastest fully functional Prolog known to 
the authors. Even after the various research efforts with 
faster estimates become viable, it will still remain the fastest 
Prolog available on a non-symbolic (i.e. general purpose) 
processor. 

6.2. Analysis 

In this section we discuss where the existing performance 
of the system comes from, and where we feel potential 
performance was lost. We also discuss barriers to improved 
performance. 

We believe the performance of this system is due to three 
factors: 1) compiling Prolog instead of interpreting, 2) 
compiling directly into microcode instead of interpreting 
(saving fetch and decode cycles), and 3) the pipelining of the 
instructions by the NCR/32-000. 

With compiled Prolog, Prolog clauses and structured data 
types are represented as sequences of W-code instructions. This 
is much more efficient than representing the entire program as 
a data structure and traversing it interactively. Looking at 
the figures for deterministic concatenate, we see th‘at the beat 
results have been reported for compiled systems, while the 
poorest results have been reported for interpreted systems. 
Thus it is not surprising that compiling Prolog helped improve 
performance on the NCR/32-000. 

Performance was also achieved by compiling directly into 
microcode, as opposed to having the Prolog microroutines 
merely resident in microstore and invoked by 
macroinstructions. By executing microinstructions directly out 
of microstore, the overhead associated with opcode cracking 
and reaching the appropriate microcode flow is eliminated. 

One obvious disadvantage of this approach is that: it uses 
large amounts of microstore. Compiled programs require an 
inordinate amount of memory, as shown below: 

Compiled Benchmark Size 

Name approx. size in bytes 

nrev 8K 
qs4 8K 
palin 16K 
diff 16K 
query 8K 
ckt2 32K 
con1 2K 
con6 2K 
hanoi 2K 
mumath 8K 
pri2 4K 
queens 8K 

Table 9 

Since the NCR/32-000 addresses at most 64K Is-bit. 
microinstructions, and since the original Prolog sources for the 
above benchmarks are relatively small, large Prolog programs 
will have to be broken up and swapped in to WCS from main 
memory. If, however, we can swap microcode concurrently; 
then the steadily decreasing cost of memory leads the authors 
to conclude that the space/time tradeoff is a good one. 

The final source of improved performance is the 
pipelining of the NCR/32-000 and the use of delayed branches. 
The NCR instruction set provides eleven delayed branching 
instructions. These instructions were used whenever possible 
in the Prolog microroutines. Judicious use of delayed 
branching kept pipeline flushes to a minimum. 
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What limits. further performance gains? To answer this 
question, we must consider the process of implementing an 
abstract machine architecture. To implement an abstract 
architecture efficiently, the host machine should be as closely 
mapped to it as possible. The better the mapping, the higher 
the performance. When the mapping is less than ideal, 
performance is lost as the implementer attempts to make up 
for what he does not have, or tries to have one scarce resource 
serve two different functions. This probllem came up over and 
over again in the course of this project. Thus it is believed 
that imperfections in the mapping from Warren’s abstract 
machine to the NCR/32-000 are the principal barriers to 
improved performance. We now consider some of these. 

Warren’s machine has four basic data types, indicated by 
a tag. Thus architectural support for tag extraction and 
processing is crucial to a successful implementation of 
Warren’s machine. Unfortunately, the NCR/32-000 is a 
general-purpose microprocessor, and provides relatively little 
support of this kind. Only four of its sixteen registers are 
byte-addressable, and none are addressable at any smaller 
level of granularity. Thus, to determin.e the data type of a 
value, it is necessary to first move it into a byte-addressable 
register. One must then either use a conditional “jump-on- 
register-byte” instruction, or load a literal value into another 
byte addressable register and use a “compare-byte” 
microinstruction, branching on the result of the comparison. 
Both of these operations take extra microcycles, due to the 
difficulty of tag extraction from data values. Ideally, one 
would want a new microinstruction that does a four-way 
branch based on a two-bit field of a data value. 

Another performance limitation comes from the scarcity 
of registers on the NCR/32-000. In addition to performing at 
least some of the functions of the special purpose registers on 
Warren’s machine, NC!R/32-000 registers must also be used for 
storing temporary values, passing parameters to microroutines, 
and holding addresses and data for memory accesses. Thus 
some of Warren’s abstract registers cannot be mapped onto real 
NCR/32-000 registers, and must instead be located in 
scratchpad. (Recall figures 7 and 8). This in turn leads to 
wasted microcycles when these registers must be accessed. 

One of the more curious features of the NCR132-000 that 
hinders Prolog performance (and, perhaps, performance in 
general), is the grouping of registers in address/data pairs. 
When storing to memory, only the register containing the data 
is specified in the instruction: the address where the data is to 
be written must be stored in the corresponding data register. 
With the Warren machine, however, any of the special 
registers could serve as address registers; associating a 
separate data register with each one of them would have forced 
even more resources out of the register file and onto 
scratchpad. Thus the implementer spends a great deal of time 
moving addresses and data into paired registers. Currently, 
the “store” microinstruction of the NCR/32-000 devotes eight 
bits to the opcode, four bits to write-enable byte tags, and four 
bits to indicate the data register of the register pair. For 
systems where writing individual bytes of memory is not of 
interest, the byte-enable tags could be replaced by a four bit 
field encoding the data register. The extra complexity 
necessary to implement this feature would be negligible, and 
would afford a great deal of flexibility to the assembly 
language programmer. For systems where the ability of 
writing to individual bytes of memory is important, the write- 
enable tags could be moved to an external register, which 
could be loaded on the previous cycle with a “transfer-out- 
external” (TOE) microinstruction (see 171). 

In general, further performance improvements are limited 
by the general-purpose nature of the NCRi32-000. Prolog is a 
symbolic language; achieving high Prolog performance requires 
support for symbolic processing. However, it is not necessary 
that microprocessors give up their general purpose nature in 
order to execute symbolic languages efficiently. By making 
modest changes involving support for tagging and a more 
flexible instruction set, the NCR/32-000 (and microprocessors 
in general) can efficiently execute symbolic languages without 
losing performance on other classes of problems. 

7. Conclusions 

This paper has presented the results of an attempt to 
implement Prolog on the NCR/32-000 microprocessor. Using 
the results of simulating the execution of Prolog programs, we 
mapped the Warren abstract architecture onto the resources of 
our NCR/32-000 host, and wrote the required software to 
bridge the levels of translation. In so doing, we have been able 
to achieve the fastest Prolog currently available. We were also 
able to gain insight into how processors might be modified to 
support symbolic languages, as well as insight into the 
architectural issues involved in supporting Prolog. 
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