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ABSTMCT

It has been suggested that non-scientific code has very little
parallelism not already exploited by existing processors. In this
paper we show that contrary to this notion, there is actually a
significant amount of unexploited parallelism in typical general
purpose code. In order to exploit this parallelism, a combination of
hardware and software techniques must be applied. We analyze
three techniques: dynamic scheduling, speculative execution and
basic block enlargement. We will show that indeed for narrow
instruction words 1itde is to be gained by appl yi ng these techniques.
However, as the number of simultaneous operations increases, it
beeomes possible to achieve speedups of three to six on realistic
processors.

1 Introduction

Advances that enhanee performance can be broadl y placed into
two main categories technological and architectural. Technological
advances involve finding new materials and techniques to make
gates that switch faster and memories that can be accessed faster.
Architectural advances involve reorganizing these gates and mem-
ories to allow more operations to occur at the same time (i .e. a hl gber
degree of overlap). Technological advances have dominated in-
creases in speed in the past but the technology is approaching

fundamental limits. Future increases in performance will be foreed
to rely more heavily on advances in computer architecture. In this
paper, we focus on different architectural techniques applied to

single instruction stream processors.
Several recent studies, for example [JoWa89] and [SmLH90],

have suggested that most general purpose instruction streams have
very little parallelism available, allowing a speedup of on the order
of at most about two. This has caused some to say that intra-instruc-
tion stream parallelism is at ifs limit and that future increases in
performance must rely solely on inter-instruction stream parallelism.
We will show in this paper that the limits of single instruction stream
performance are far from being reached. A significant amount of
easily detectable parallelism actual 1y exists in most general purpose

instruction streams that is not exploited by existing processors.
The body of this paper has two sections. In section 2 we present

three mieroarchitectural mechanisms: dynamic scheduling, specula-
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tive execution and basic block enlargement. These three closely
related mechanisms are the focus of the performance enhancement
techniques analyzed in this paper. Dynamic scheduling involves the
decoupling of individual operations from others in the instruction
stream, allowing them to be executed independent y. Speculative
execution exploits parallelism across branches and basic block en-
largement is a technique used in conjunction with speculative exe-
cution and compile time effort. In section 3 a simulation study is
described. We outline the simulation process, present the experi-
mental methodology and reports on the results of the study.

2 Microarchitectural Mechanisms

In this section we present three microarchitectural mechanisms
that are the subject of thts paper: dynamic scheduling, speculative
execution and basic block enlargement.

2.1 Dynamic Scheduling

Dynamic scheduling is a microarchitectural mechanism that
allows the group of nodes that is currently active to be decoupled
from each other. We use the term node to refer to an individual
microoperation. Thus, the set of nodes that is issued together is not
necessarilyy the same as the set that gets scheduled. By issue we mean
the process of activating a node or preparing it for execution and
schedule refers to the process of delivering a node to a function unit.

Dynamic scheduling mechanisms have been implemented and
proposed inmanyvariations. The tag forwarding scheme of the IBM
360/91 originated the core idea behind dynamic scheduling

[Toma67]. Keller extended the idea and provided more background
in [Kel175]. Register scoreboards, such as that of 1he CDC 6600,
represent a limited form of dynamic scheduling. The HPS concept
of restricted data flow, generalized the concept of tag forwarding to
encompass all operations within a processor, including memory
operations, and with enough backup state to allow clynamic branch
prediction and precise exceptions. HPS was introduced in 1985
[PaHS85], [PMHS85] and is being reported on in continuing re-
search [PSHM86], [HwPa86], [Hwu87].

One principle advantage of dynamic scheduling over static
scheduling is that it allows individual nodes to be scheduled when
they are ready to be executed, without holding up other nodes when
they are not. In the presence of variable memory latency (i.e. cache
misses) and the ability of the hardware to disambiguate memory
addresses at run-time, this decoupling of nodes rat lead to the
discovery of valuable parallelism. Another main advantage of dy-
namic scheduling is that it allows parallelism across basic blocks to
be exploited more efficiently. Static and dynamic scheduling are not
mutual 1y exclusive, many processors use some of both techniques.

In the case of static scheduling, the pipeline of the computer is
expcsed and the compiler fills in the node S1ofs based on the static
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instruction stream. All memory operations are assumed to have a
specific fixed latency (the cache hit latency) and there is typicalIy a
simple hardware interlock to stall the pipeline on a cache miss so
that the forwarding of results within the pipeline works properly.
The compiler preserves the original sequence of memory nodes in
which there is a pxs.sible address match.

In the case of dynamic scheduling, there are no restrictions on
the ordering of the nodes within the basic block as generated by the
compiler. The machine issues all the nodes, fully decoupled from
one another and any node result can be forwarded to any other node.
Nodes are allowed to wait for memory or ALUS as long as necessary
for their operands to become ready. The exact order of the execution
of the nodes within the basic block is not determined. It may depend
on memory cache contents and/or run-time operand values. Typi-
cally backup hardware is present to support speculative execution,
allowing branch prediction misses to be processed efficiently.
(However, s~culative execution is an independent concept and can
be applied to statically scheduled processors as well.)

There are several reasons which prevent statically scheduled
machines from filling pipeline slots as effectively as dynamical y
scheduled machines. The first is variability in memory latency.
When a memory read takes a cache miss and that value is needed by
an operation, the statically scheduled machine must stall and wait
for the data even if there are other operations which are available to
be performed. It may be difficult for the compiler to organize the
memory reads and ALU operations to prevent this from occurring.
In machines with few resources this may not impose a significant
performance penalty. Only if there is significant other work which
can be done will dynamic scheduling pay off.

Another reason dynamical y scheduled machines can till pipeline
slots more fully has to do with memory address disambiguation.
Because the compiler only has static information available, it has to
make a worst case assumption about matching memory addresses.
Even if two memory nodes rarel y or never point to the same lccation,
thecompileris forced into impcsing an artificial sequentiality unless
it can determine no match will occur. An example of this is the case
of array accesses with indices computed at run-time. Dynamical y
scheduled machines can do memory disambiguation at run-time and
schedule the memory operations as appropriate to guarantee data
flow dependencies are maintained. Some sort of dynamic memory
disambiguation is usually present in all processors. In order to
pipeline memory accesses, even if they occur in program order, it is
necessary to have some checking logic to pre.sewe data dependen-
cies. Thk logic can then introduce stalls only when needed rather
than the alternative which is to force no overlap of memory accesses.
However, in the presence of out of order ALU operations and
multiple ports to memory, a bigger advantage can be achieved by
allowing memory accesses to occur out of order while still preserv-
ing flow dependencies.

Note that the ability of a statically scheduled machine to take full
advantage of an execution pipeline depends to a large extent on the
resources available. In the case that there is only one port to memory
and one ALU, it is unlikely that there will be much difference in
performance between static and dynamic scheduling.

2.2 Speculative Execution

Conventionally, dynamic branch prediction refers to a mecha-
nism in which run-time information is used to predict the direction
of branches. This is opposed to static branch prediction in which
the compiler predicts branches using static information. The ques-
tion over whether static or dynamic information is used to predict
branches is secondary to performance. The real issue is whether or
not speculative execution is supprted, therefore we use this term
rather than dynamic branch prediction.

In the case of speculative execution, a mechanism is present in
which branches are predicted and operations are issued into the
machine before the results of the prediction are confirmed (regard-
less of whether or not run-time information was used to predict the
branch). In the absence of speculative execution, branches maybe

predicted before dynamic binding occurs. This might be the case in
which branch prediction is used as a hint for the pre-fetcher to lower
instruction fetch delay.

Speculative execution implies some form of backup capability.
This is used in the case that a branch is predicted incorrectly. Note,
however, that this backup logic may be very simple, it may consist
of simpl y the ability to squash a write, flush the pipeline and re-fetch
along another path. The manner in which speculative execution is
able to increase performance depends on the extent to which the
microarchitecture employs dynamic scheduling.

In the case of a purely statically scheduled machine without
speculative execution, delay slots are usually implemented. These
are used to overlap the pipeline delay of confirming a branch
direction. Typically, the instruction immediately following a branch
instruction is executed regardless of which direction is taken (in
some cases the foIlowing two instructions). The compiler tries to
fill the delay slot with work from the basic block being branched
from or from one of the basic blocks being branched to. Ideally, the
delay slot can be filled with work which must be performed regard-
less of branch direction. In some cases, however, it may only be
possible to fill the delay slot with work that is only needed in one
direction of the branch. Filling the delay slot this way sometimes
requires the insertion of addition instructions in the alternate branch
path to undo the effect of this work. This is called jix-up code and
can be advantageous if the optimized branch direction is executed
much more frequently than the alternate one. Finally, it may be
necessary for the compiler to insert a NOP if no appropriate work
can be found for the delay slot.

If speculative execution is added to a statically scheduled ma-
chine such as we have been describing, there are several advantages.
First, delay slots can be filled more effectively. Operations maybe
placed into these locations that will get undone if the branch is taken
a certain way. Also, this obviates fix-up code in the alternate basic
block. In fact, moving operations up from a favored branch path
could apply to slots within the basic block other than the branch delay
slot. This may require more complex backup hardware however. In
order to be able to backup an entire basic block, typicall y an alternate
or backup register file is maintained and writes to memory are
buffered in a write bufler before they are committed. We will show
in the next section that wi th hardware such as this, basic blocks can
be enlarged beyond their normal size to further increase pipeline slot
utilization.

While statically scheduled machines can take advantage of spee
ulative execution as we have just described, its use in a dynamical y
scheduled machine is a much more powerful concept. Here, the
merging of operations continues across conditional branches and
thus all work within several adjacent dynamic basic blocks contends
for data path resources.

This use of speculative execution in conjunction with dynamic
scheduling in this way introduces the concept of the instruction
win&w. The instruction window represents a window of the dy-
nami c instruction stream. The instruction window can be defi ned in
several ways. We can count the number of active basic blocks,
where an active basic block is one that has been partially or fully
issued but not retired. We can also measure the window size by the
number of operations i n a particular state. For example, the number
of active operations, the number of read y operations or the number
of valid operations. An operation in the machine is always valid
between the time it is issued and retired. It is active up until the time
it is scheduled and it is ready on] y when it is active and schedulable.

2.3 Basic Block Enlargement

The basic blcck enlargement techniques we will describe in this
section involve the exploitation of speculative execution to increase
the size of the basic blocks as seen by the hardware. Suppose we
have a statically scheduled processor with speculative execution and
the ability to execute an entire basic block before committing the
work. As we discussed in the previous section, this allows the
compiler to move work into unused pipeline slots without having to
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Basic Block Enlargement Examples
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lsert fix-up code in the alternate path. But the compiler need not multi crle basic blocks are issued into the machl ne. rrarallelism can
stop with only a single basic block. Several basic blocks could be
combined into a single unit, re-optimized and then generated as a
single entity for execution.

In this case, at run-time this enlarged basic block would contain
several embedded branch tests to confirm the branch prediction was
correct. We call these operations assert nodes because they either
execute silently or signal that some sort of backup is necessary. ThLs
is essentially what trace scheduling [Fish81] involves except in that
case there is no speculative execution and no backup hardware, so
the compiler must be more conservative. Loop unrolling and soft-
ware pipelining are also examples of enlarging basic blocks in the
absence of speculative execution.

Figure 1 illustrates two simple basic block enlargement exam-
ples. On the left is the original code where a basic block A branches
to either B or C based on a run-time test. Basic block C further
branches either back to A or to some other place. In the first example
of basic block enlargement, shown in the middle of the figure, we
create two new basic blocks, AB and AC, each of which has been
re-optimized as a unit. At run time one of the two basic blocks, for

example AB, would be issued. If the embedded branch test is
incorrect, the entire basic block needs to be discarded and execution
needs to continue with AC. The branch node which previously was
part of A has been retained, but it has been converted from a trap
node to a~ault node and been given an explicit fault-to location.

A trap node is an operation which may signal that a prediction
applied to a future basic block is incorrect, indicating that the basic
block containing the trap ncde can be retained. When a fault node
signals, on the other hand, the basic block containing the node must
be discarded. Note that in the case that the AC basic block is never
entered directly, the fault node could be eliminated. This is because
the only way to get there would be tbe fault node i nAB. Thus, there
is no need to make the test that is guaranteed to succeed. However,
if code which previously branched to A can potential y branch to
AC, then the fault node needs to be kept.

This process of basic block enlargement can be continued recur-
sive y, allowing the creation of arbitrarily large basic blocks. Note
that multiple iterations of a loop can be overlapped in this way, as

shown on the right of figure 1, In this case, two iterations of the loop
have been unrolled into a single basic block ACAC.

Consider the application of basic block enlargement to dynami-
cally scheduled machines. A natural question which arises is why
basic block enlargement is needed with dynamic scheduling. Since

. .1

already be exploited across conditional branches. Why then, is there
an advantage to having the compiler (or possibly a hardware unit)
create larger basic blocks? There are two reasons: larger scale
optimization and issue bandwidth. First consider issue bandwidth.
A problem that arises with basic blocks small relative to the number
of operations that can be issued in a single cycle is that of low
utilization of issue slots. The solution is to allow i] larger unit of
work to be packed into the set of nodes issued as a unit. In this way,
the machine does not starve due to not being able to get enough work
into it. In a macli ne which can issue 16 nodes in a single cycle
running code with basic blocks that are are only 5-6 nodes large, this
is obviously a critical technique.

The second reason for having basic block enlargement with
dynamic scheduling has to do with the optimization of basic blocks.
By combining two basic blocks across a branch into a single piece
and then re-optimizing it as a unit, a more efficient basic block is
achieved than would be created by just putting one after another.
Suppose a compiler generates code like this:

Ito <-- RO+4
RI <-- memory [ RO ]

if (RI > O) jump to E else A

A: RO <-- RO + 4
W <-- memory [ RO ]

If the two basic block are combined across this branch, the
artificial flow dependency through RO can be eliminated. If the two
basic blocks were issued together, this would be difficult or impossi-
ble to optimize.

Thus, dynamic scheduling needs basic block enlargement to
suppmt it. Now the opposite question arises given basic block
enlargement why do we need dynamic scheduling? The main reason
is that basic block enlargement cannot take advantage of parallelism
as flexibly as dynamic scheduling. As we have already seen, small
basic blocks leads to problems with issue bandwidth and large scale
optimizations. At the other extreme, a single enlarged basic block
(as in thecaseof static scheduling) suffers from low efficiency. Each
branch fault node within the enlarged basic block has a certain
probability of signaling. For large basic blocks running non-scien-
tific code, there is a point where efficiency will fall off to the point
that enlargement is no longer worthwhile. The chances of having to
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discard a basic block are high enough that it doesn’t pay to make it
larger. ‘Jle application of dynamic scheduling on top of basic block
enlargement allows work with high probability of being needed
(early in the window) to coexist with work with lower probability of
being needed (late in the window). Thus, there is an optimal point
between the enlargement of basic blocks and the use of dynamic
scheduling.

3 Simulation Description and Results

In this section we describe the simulation study which was
conducted and present the restdts from that study. Data was collected
under a variety of machine cotttlgurations for a variety of bench-
marks.

3.1 Simulator Overview
There are two basic components the translating loader (tId) and

the run time simulator (sire). The translating loader decompiles
object code back into an intermediate form then does an optimized
code generation for a specific machine configuration. The run time
simulator reads in the translated code and does a cycle by cycle
simulation of the program. System calls which are embedded in the
original program are executed by the operating system on which the
simulator is running. The run time simulator collects statistics on
the execution of the entire program except for the the system calls
themselves, thus it represents the user level or unprivileged portion
of the execution.

Both the translating Ioaderand the run-time simulator collect data
which is gathered in a specified statistics file. The creation of a basic
block enlargement file is handled by a separate program, which uses
the statistics file. It combines basic blocks with high frequency
branches between them into enlarged basic blocks. In the case of
loops, multiple iterations are unrolled. The basic block enlargement
tile is then used as an input to the translating Ioader. The run-time
simulator also supports static branch prediction (used to supplement
the dynamic branch prediction) and a trace mode which allows the
simulation of perfect branch prediction.

The division of the simulator into two pieces was done for
convenience in data collection. The translating loader stores the
programs fully decoded but it is not expected that an actual machine
would be designed for such an instruction stream. For a small price
in run-time decoding, the instruction bandwidth could be signi fi-
cantly reduced. Nso, in the case of a dynamically scheduled pro-
cessor, a more general format to be passed through a fill unit would
obviate having the compiler know the exact function unit configu-
ration.

The parameters which relate directly to the abstract processor
model fall into four main categories scheduling discipline, issue
model, memory configuration and branch handling. The scheduling
parameters concern static vs. dynamic scheduling and window size.
The issue model concerns the makeup of the instruction word and
the memory configuration parameters set the number of cycles for
memory accesses and the cache size if any. The fourth parameter
concerns basic block enlargement and branch prediction. The range
of each parameter is shown below

● Scheduling Discipline

Static Scheduling

Dynamic Scheduling, Window Size = 1 Basic Blocks
Dynamic Scheduling, Window Size = 4 Basic Blocks

Dynamic Scheduling, Window Size = 256 Basic Blocks

“ Issue Model

1. Sequential Model

2. Instruction Word= 1 Memory Node, 1 ALU Node

3. Instruction Word= 1 Memory Ncxle, 2 ALU Nodes

4. Instruction Word= 1 Memory Ncde, 3 ALU Nodes

5. Instruction Word= 2 Memory Nodes, 4 ALU Nodes

6. Instruction Word= 2 Memory Nodes, 6 ALU Nodes

7. Instruction Word= 4 Memory Nodes, 8 ALU Nodes

8. Instruction Word= 4 Memory Nodes, 12 ALU Nodes

“ Memory Configuration

A. 1 Cycle Memory

B. 2 Cycle Memory

C. 3 Cycle Memory

D. 1 Cycle Cache Hit, 10 Cycle Miss, lK Cache

E. 1 Cycle Cache Hit, 10 Cycle Miss, 16K Cache

F. 2 Cycle Cache Hit, 10 Cycle Miss, lK Cache

G. 2 Cycle Cache Hit, 10 Cycle Miss, 16K Cache

● Branch Handling

Single Basic Block

Enlarged Basic Block

Perfect Prediction

The translating loader and the run-time simulator both do things
differently depending on whether a statically scheduled or a dynam-
ically scheduled machine has been specified. llus, we need only to
specify which of these two models is being used. In addition, we
vary the window size in the case of dynamic scheduling, The
window size can be specified in several ways. Here we specify it in
terms of the number of active basic blocks allowed. We allow the
window size to be 1, 4, and 256. If the window size is set to 1, this
means that each basic block is completely retired before the next
basic block can be issued. Thus, no inter-basic block parallelism
will be exploited.

The issue model is the second main area in which the abstract
processor model is parameterized. The issue model covers how
many nodes and what types can be issued in each cycle, that is, the
format of the instruction word. The data from the translating loader
on the benchmarks we studied indicated that the static ratio of ALU
to memory nodes was about 2.5 to one. Therefore, we have simu-
lated machine configurations for both 2 to 1 and 3 to 1. We also
simulate a model with a single memory node and a single ALU node.
Finally, there is configuration we call the sequential model, in which
only a single node per cycle is issued.

The third main area of parameterization of the abstract processor
model is the memory configuration. The memory system is import-
ant to vary because we expect the tradeoffs for scheduli ng discipline
to be different for different configurations. We considered memory
access times of 1, 2 and 3 cycles. This represents the case for a
perfect cache. Also, we simulate two different cache sizes, lK and
16K bytes. The cache organization is two way set associative with
a 16 byte block size. Note that the write buffer acts as a fully
associative cache previous to this cache, so hi t ratios are higher than
might be expected. In all cases a cache miss takes 10 cycles.

The fourth variable used in the simulation study concerns how
branches are handled. The run-time simulator implements a 2-bit

counter branch predictor for dynamic branch prediction. The
counter can optionally be supplemented by static branch prediction
information. This information is used onl y the first time a branch is
encountered, all future instances of the branch wi 11use the counter
as long as the information remains in the branch target buffer.
Another option allows branches to be predicted 100%. This is
accomplished by using a trace of basic blocks previousl y generated.

The main purpose behind the 100% prediction test is to establish
an upper-limit on performance given that branch prediction doesn’t
constrain execution. These numbers shouldn’t be taken to be real-
istic performance targets since perfect branch prediction is impossi-
ble. However, several limitations of the dynamic branch prediction
scheme suggest that it may underestimate realistic performance.
First, the 2-bit counter is a fairly simple scheme, even when supple-
mented with static branch information. It is possible that more
sophisticated techniques could yield better prediction accuracy.

Also, the simulator doesn’t do branch ~ault prediction, only branch
trap prediction. This means that branches to enlarged basic blocks
will always execute the initial enlarged basic block first. A more
sophisticated scheme would predict on faults such that re~ated
faults would cause branches to start with other basic blocks.
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The benchmarks we have selected are UNIX utilities which
represent the kinds of jobs that have been considered difficult to

speed up with conventional architectures. The following is the list
of benchmarks used

● sort (sorts lines in a file)

● grep (print lines with a matching string)

“ cliff (find differences between two files)

“ cpp (C pre-processor, macro expansion)

● compress (file compression)

In order to handle basic block enlargement, two sets of input data
were used for each benchmark. The first set was used in the single
basic block mode and dynamic branch data was collected. Then, a
basic block enlargement file was created using the branch data from
the first simulation run. This file was used as input to the simulations
for enlarged and perfect branch prediction studies. The input data
used was different on these second simulations in order to prevent
the branch data from being overly biased.

The basic block enlargement file creation employs a very simple
procedure. The branch arc densities from the first simulated run are
sorted by use. Starting from the most heavily used, basic blocks are
enlarged until one of two criteria are met. The weight on the most
common arc out of a basic block can fall below a threshold or the
ratio between the two arcs out of a basic block can be below a
threshold. Only two-way conditional branches to explicit destina-
tions can be optimized and a maximum of 16 instances are created
for original PC. A more sophisticated enlargement procedure would
consider correlations between branches and would employ more
complex tests to determine where enlarged basic blocks should be
broken.

3.2 Simulation Results and Analysis

In this section we will present the simulation results from the
benchmarks and the configurations discussed in the previous sec-
tion. Each of the benchmarks were run under the conditions de-
scribed above. There are 560 individual data points for each
benchmark. This represents the product of the number of setting for
each variable except that the 100’% prediction test was only run on
two of the scheduling disciplines (dynamic scheduling with window
sizes of 4 and 256). Many statistics were gathered for each data point
but the main datum of interest is the average rrumber ofr-etirednoa’es
per cycle. This reprexms the total number of machine cycles
divided into the total number of nodes which were retired (not
executed). In the case of static scheduling, retired nodes and exe-

cuted nodes are the Sam% in the case of dynamic scheduling,
un-retired executed nodes are those that are scheduled but end up
being thrown away due to branch prediction misses. Note that the
number of nodes retired is the same for a given benchmark on a given
set of input data.

Figure 3 summarizes the data from all the benchmarks as a
function of the issue model and scheduling discipline. This graph
represents data from the memory configuration ‘A’ for each of the
eight issue models. That is, the data is for the case of a constant 1
cycle memory across a variety of i nstruction word widths. The ten
lines on this graph represent the four scheduling disciplines for single
and enlarged basic blocks and the two scheduling disciplines for
perfect branch prediction case.

The most important thing to note from this graph is that variation
is performance among the different schemes is strongly dependent
on the width of the instruction word and in particular on the number
of memory nodes issued per cycle. In a case like issue mmlel ’2’,
where only one memory and one ALU node are issued per cycle, the
variation in performance among all schemes is fairly low. However,
for issue model ’8’, where up to 16 nodes can be issued per cycle

the variation is quite large.
We also see that basic block enlargement has a significant

performance benefit for all scheduling disciplines. Implementing
dynamic scheduling with a window size of one does little better than
static scheduling while a window size of four comes close to a

window size of 256. This effect is more pronounced for enlarged
basic blocks than for single basic blocks. Also note that there is
significant additional parallelism present that even a window size of
256 can’t exploit. Thus, there is promise for better branch prediction
and/or compiler techniques. It is interesting to note that using
enlarged basic blocks with a window size of one still doesn’t perform
as well as using single basic blocks with a window size of four
(although they are close). These are two different ways of exploiting
speculative execution. In the case of enlarged basic blocks without
multiple checkpoints, the hardware can exploit parallelism withh
the basicblockbut cannot overlap execution with other basic blocks.
In the other case of a large instruction window composed of single
basic blocks, we don’t have the advantage of the static optimization
to reduce the number of nodes and raise utilization of issue
bandwidth. Taking advantage of both mechanisms yields signifi-
cantly higher performance than machines using either of the two
individually can achieve.

Figure 4 summarizes the data as a function of memory configu-
ration and scheduling dkicipline. This graph presents data for an
issue model ’8’ for each of the seven memory configurations. Each

of the lines on the graph represents one of the ten scheduling
disciplines as in the previous graph (the first column in this graph is
exactly the last column in the previous graph). Note the order of the
memory configurations on the horizontal axis. The first three data
points are for single cycle memory with various cache sizes, the
second three points are two cycle memory and the last data point is
three cycle memory.

Note that the slops of the lines are all fairly close. What this
means is that as aper-centage of execution time, the lines higher on
the graph are affected less by the slower memory than the lines lower
on the graph. It might seem at first as though tripling the memory
latency should have a much greater affect on performance than in
any of these cases. Note that the memory system is fully pi@itted.
Thus, even with a latency of 3 cycles, a memory read can be issued
every cycle to each read pat. In the case of static scheduling, the
compiler has organized the nodes to achieve an overlap of memory
operations while in the case of dynamic scheduling, the scheduling
logic performs the same function. Tiis is particularly true for
enlarged basic blocks where there is more of an opportunity to
organize the ncdes so as to hide the memory latency.

Even across all issue models there were no cases of steep curves
as a function of memory configuration. TMs fact suggests that
tolerance to memory latency is correlated with high performance. It
is only machines that are tolerant of high memory latency to begin
with which reach a high performance level with 1 cycle memory.
Increasing the memory latency to 3 cycles has a minor affect on
them. Machines that are intolerant of high memory latency don’t
perform well even with fast memory, so they have less to lose when
the memory slows down. Being able to execute many nodes per cycle
means having lots of parallelism available. If the memory slows
down, this just means that there are more outstanding memory reads
so more memory operations must be simultaneously executing. As
we see from the graph, this is true even in the issue model ’8’ case,
indicating that even more parallelism could be exploited with more
paths to memory. Of course, the situation would be much different
if the memory system were not fully pipelined. In that case a path
to memory would have to go idle and we would expect a major
decrease in performance as the memory slows down.

Figure 5 summarizes variations among the benchmarks as a
function of a variety of machine configurations. We have chosen 14
composite configurations which slice diagonally through the 8 by 7
matrix of issue model and memory configuration. The five lines on
the graph represent the performance on the given configuration for
each of the benchmarks. The scheduling discipline is dynamic

scheduling with a window size of four with enlarged basic blocks.
As would be expected, the variation (percentage-wise) is higher for

wide multinodewords. Several benchmarks take a dip in going from
configuration ‘5B’ to configuration ‘5 D’. ThLs is due to low memory
locality; the ‘B’ configuration has constant 2 cycle memory and the
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‘D’ configuration as 1 cycle hit, 10 cycle miss memory with a lK
cache. This effect is also noticeable in figure 4 in comparing the ‘B’
column to the ‘D’ column.

Figure 6 presents the operation redundancy for the eight issue
models as a function of scheduling discipline. This graph illustrates
one of the keys to speculative execution in particular and decoupled
architectures in particular. Note that the order of the scheduling
disciplines in figure 6 is exactly opposite from that in figure 3. Thus,
the higher performing machines tend to throwaway more oprations.
In the case of the dynamically scheduled machine with enlarged
basic blocks and a window size of 256, nearly one out of every four
nodes executed ends up being discarded. This is the price to pay for
higher performanw. However, note that this same cotilguration
with a window size of four has significantly fewer discarded opera-
tions but the performance (from figure 5) is almost identical.

Now let’s look into basic block enlargement in more detail.
Figure 2 shows basic block size histograms for single and enlarged
basic blocks averaged over all benchmarks. As would be expected,
the original basic blocks are small and the distribution is highly
skewed. Over half of all basic blocks executed are between Oand 4
nodes. The use of enlargement makes the curve much flatter. How-
ever, a caveat shot,dd be made about this graph. The basic block
enlargement techniques employed here should be distinguished
from techniques that don’t require speculative execution. In those
cases, mainly successful with scientific cxrde, basic blocks are en-
larged by reorganizing the code and by inserting fix-up code if
necessary. Then, the redundancy issue is still present, it is reflected
in how many fix-up nodes are executed. Through the use of specu-
lative execution, basic blocks could be made arbitrarily large. The
performance would start to fall with the higher redundancy and the
diminishing returns of large basic blocks.

4 Conclusions

Engineering involves the analysis of tradeoffs. In the case of
computer engineering this analysis is particularly mmplex since
decisions atone level may have wide reaching effects on other levels.
Thus, an important facet of any serious computer design project is
the careful consideration of how to allocate resources among the
different levels of the machine. This fact has long been appreciated
by most computer engineers. The following quote comes from 1946
in a discussion about which functions to include in an arithmetic unit
by Burks, Goldstine and von Neumann:

“We wish to incorporate into the machine -- in the form of

circuits -- only such logical concepts as are either necessary

to have a complete system or highly convenient because of

the frequency with which they occur and the influence they

exert in the relevant mathematical situations. “

Another earl y reference comes from 1962 in the description of

project STRETCH in which Werner Buchholz states a guiding

principle as follows:

“The objective of economic efficiency was understood to

imply minimizing the cost of answers, not just the cost of

hardware. This meant repeated consideration of the costs
associated with programming, compilation, debugging and

mm”ntenance, as well as the obvious cost of machine time for

production computation. ... A corollaiy of thispn”nciple was

the recognition that complex tasks always entail a price in

information (and therefore money) and that this price is

minimized by selecting the proper form of payment -- some-

times extra hardware, sometimes extra instruction execu-

tions, and sometimes harder thought in developingprogram -

ming systems. ”

Ever since the first stored program computer was designed 40
years ago, microarchitwture and compiler technology have both
evolved tremendously. Some of these changes are: different ratios
of processor speed and memory speed, increasing significant of
chip boundaries and improved compiler technology. At each step
in this evolution, computer designers have attempted to strike a
balance in the placement of functionality. At various times certain
functions have been moved from hardware to software and vice
versa, and this movements likely to continue. It has been this change
in technology, not a change in design philosophy which has caused
tradeoffs to be optimized indifferent ways.

In this paper, we have explored the notion of employing ad-
vanced software and hardware techniques for exploiting fine grained
parallelism in general purpose instruction streams. By providing
more background for the analysis of hardware/software tradeoffs,
we can better understand what the limits of single instruction stream
processors are and better assess how to most cost-effectively allocate
resources within a computer system. We have identified three
closely related concepts and explored their effectiveness. They are
dynamic scheduling, speculative execution and basic block enlarge-
ment. We have shown that through the application of these tech-
niques, more parallelism can be exploited than is generally
recognized to be present in general purpose instruction streams.

We have presented simulation results showing realistic proces-
sors exploiting these three ideas achieving speedups approaching six
on non-scientific benchmarks. Given the complexity of the hard-
ware required, some might consider this an upper bound on the
performance of single instruction stream processors. Actually, we
consider this more of a lower bound. There are many unexplored
avenues which should be able to push the degree of parallel ism even
higher. First, we have not fully optimized the use of the techniques
analyzed. Better branch prediction cm.rld have been used and the
implementation of basic block enlargement could have been im-
proved. Also, better compiler technology holds great promise for
allowing more parallelism to be exploited. Wider multinodewords
put more pressure on both the hardware and the compiler to find
more parallelism to exploit.
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Figure 5
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