
A High Performance Prolog Processor with Multiple Function Units

Ashok Singhal

Computer Science Division
University of California

Berkeley, CA 94720

Yale N. Patt

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2110

ABSTRACT

We describe the Parallel Unification Machine
(PLUM), a Prolog processor that exploits fine grain
parallelism using multiple function units executing in
parallel. In most cases the execution of bookkeeping
instruct,ions is almost completely overlapped by
unification, and the performance of the processor is
limited only by the available unification parallelism.
We present measurements from a register transfer
level simulator of PLUM. These results show that
PLUM with 3 Unification Units achieves an average
speedup of approximately 3.4 over the Berkeley VLSI-
PLM, which is usually regarded as the current highest
performance special purpose, pipelined Prolog proces-
sor. Measurements that show the effects of multiple
Unification Units and memory access time on perfor-
mance are also presented.

1. Introduction

The growing interest in logic programming and
Prolog, has resulted in substantial research towards
t.he design of high performance Prolog systems by tak-
ing advantage of parallel hardware. Many research
groups are trying to exploit parallelism available in
Prolog programs by executing parallel processes on
multiple processors [2,5,8-lo]. Others have tried to
exploit parallelism of a finer grain size by overlapping
the execution of instructions of a single Prolog process
by means of special purpose, pipelined processors
16,141. Since the pipelines in these processors are quite
short, instructions are overlapped only to a very lim-
ited extent. A large fraction of the execution time of
such processors is spent on control and bookkeeping
instructions, instead of unification (an operation simi-
lar to pattern matching that performs most of the
“useful work” in a Prolog program). In this paper we
demonstrate that a processor with multiple function
units can overlap execution of many more instructions,
and thus achieve a much larger speedup over

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct eommer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee an&or specific permission.

0 1999 ACM 09EW7495/89/OOOO/Oi95$Ol.~

sequential pipelined processors. Bookkeeping opera-
tions can overlap almost completely with unification,
and several unifications can also execute in parallel.
We describe one such processor, the Parallel
Unification Machine (PLUM), and present performance
measures obtained by register transfer level simula-
tion. Each function unit of PLUM can be imple-
mented by a VLSI chip of moderate complexity with a
clock frequency comparable to modern single chip
microprocessors.

Before proceeding with the description of PLUM,
we provide the necessary background for this paper: a
brief description of Prolog, a description of the execu-
tion and storage model used by PLUM, an introduc-
tion to the sources of parallelism in Prolog programs,
and a summary of relevant literature. In section 2 we
describe the main principles used in the PLUM design.
We describe PLUM’s architecture and implementation
in section 3. Simulation results and analysis are
presented in section 4. Section 5 concludes the paper
with a summary of our results and a discussion of
work in progress.

1.1. A Brief Description of Prolog
Prolog programs consist of a collection of clauses

and a goal. The first goal is also called a query. The
program is executed by the Prolog system by trying to
satisfy the goal using the clauses in the program.
Clauses have a head and an optional body that consists
of one or more goals. Goals and clause heads are
represented by terms. Terms may be simple or com-
plex. Complex terms are structures (a list is a special
ca.se of a structure); each consists of a functor (name
and arity of the term) and one or more arguments.
The arguments are themselves terms. Simple terms
are atoms or variables. The unification of two terms
is the process by which the variables in the terms are
bound such that the two terms become identical. Pro-
log finds the smallest such set of bindings (this set is
unique). A goal succeeds if it unifies with a clause
head and if all the goals in the body of the clause also
succeed when executed in sequence. If no such clause
exists, the goal fails. In order to execute a goal, Pro-
log tries each clause in the program in sequence. Since
a goal can never unify with a clause whose head has a
different functor, only clauses that have the same func-
tor in their heads need be tried. The collection of such
clauses is called a procedure. Thus, a goal is a pro-
cedure call. If a procedure has more than one clause

195

that could potentially satisfy a goal, Prolog tries the
candidate clauses in sequence until a clause succeeds
or there are no more clauses to try. Before trying one
of several candidate clauses, the state of the program
must be saved in a choicepoint so that the state can be
restored if the clause fails and another clause must be
tried. The process by which the state is restored on
failure is called backtraclcing. Backtracking imple-
ments Prolog’s left to right, depth first search for a
soIution to the query.

1.2. PLUM’s Prolog Execution Model

PLUM’s execution model is based on that of the
Warren Abst.ract Machine (WAM) [17]. Conventional
procedural languages, such as C, have a stack on
which call frames are stored. A call frame contains
information such as the return address and procedure
arguments. Values of registers may also be saved in
the call frame by the caller so that the registers may
be restored when control returns to the caller. PLUM
also has a memory area in which call frames (called
environments) are stored. Although we refer to this
area as the “environment stack”, it is not really a true
st,ack. In conventional programming languages the
call frame could be deallocated from the stack when
cont.rol returns from the callee, and the stack space is
recla.imed. Prolog, however, may have to backtrack to
the environment of the procedure to try another
clause. This can happen if a choicepoint is created
after t.he environment frame is created, and in that
case the memory space occupied by t.he environment
cannot be reclaimed when control returns from the
callee. Therefore, the current environment frame is
not necessarily on top of the environment area, as
required by a true stack.

Prolog also needs to provide st,ora,ge for
choicepoints to implement, backt.racking. Since back-
tracking uses a depth first search strategy, the
choicepoints may be stored on a stack. Environments
and choicepoints may be placed in separate stacks (as
in PLIJRI) or in the same stack (as in the PLM IS]).

Prolog creates it data structures, including
unbound variables in a memory area called the heap.
The heap space is allocated and deallocated as a stack
as a simple means of garbage coilection. In addition to
state saved in a choicepoint, Prolog needs to keep
track of all bindings of variables on the heap made
after each choicepoint so that these bindings can be
undone when backtracking to the choicepoint. This is
accomplished by saving the addresses of the variables
tha.t are bound after each choicepoint on another stack
called the trail. The location of the top of t.he trail
stack at the time the choicepoint is created is saved in
the cboicepoint. All variables whose addresses are in
t.he trail stack above the location saved in the
choicepoint are unbound when Prolog backtracks to
the choicepoint. Yet another stack, the push down
list (PDL), is used by the unification algorithm for
nested 1ist.s and structures.

Arguments could be passed to procedures either
in registers (in which case the argument registers must
be saved in choicepoints), or in an environment frame
in memory (see [15] for a comparison of the two
methods). PLUM uses argument registers for reasons
that. will be explained in section 2.

1.3. Fine Grain Parallelism in Prolog

Several forms of parallelism can be exploited in
Prolog programs [13]. AND parallelism is exploited
when several goals of a clause are executed in parallel.
OR parallelism is exploited when several clauses of a
procedure are tried in parallel. The AND and OR
branches of the solution tree are usually exploited by
parallel processes. Parallelism of a finer grain is also
present in Prolog. Unification parallelism is exploited
when several arguments of the goal are unified in
parallel with corresponding arguments of a clause
head. Bookkeeping and control operations, such as
choicepoint creat.ion and environment, allocation, can
execute in pa.rallel with unification. Since unification,
bookkeeping and control operations usually execute in
far fewer cycles tha.n an AND or OR process, parallel-
ism among them must be exploited with far less over-
head in order to be useful. In PLUM fine grain paral-
lelism is exploited by multiple function units.

1.4. Related Work

PLIJM evolved out of experiments with PUP [3].
\vhich also used multiple function units to exploit fine
grain parallelism in Prolog, and with HPS [la], a res-
t.ricted data flow architecture that uses the Tomasulo
algorit.hm [IS] t.o control mult.iple function units.
PLUM’s register set and pipeline control design
benefited from the design of the POPE processor [I].
POPE exploits fine grain parallelism only across pro-
cedure boundaries by executing each procedure on a
separate processor. PLUM’s storage model and
abstract machine are based on the Warren Abstract
Machine (WAM) [17]. Ito et al [l:l] and Hasegawa et
al [S] have proposed data flow machine for logic pro-
gramming languages that exploit fine grain parallelism.
Citrin [4] proposes a static data dependency analysis
to determine which unifications of a clause head are
known to be independent at compile time, and can be
scheduled to run in parallel.

2. Design Philosophy

PLUM’s design is based on three main principles:
using multiple function units to execute instructions in
parallel, using data driven control of the function units
so that operations may execut.e whenever their
operands are available, and partitioning memory to
increase available memory bandwidth and reduce the
sha.ring of memory among function units. In this sec-
t.ion we justify these principles. In addition to this
design philosophy, PLUM is designed to eliminate
st,ahs in instruction dispatch pipeline wherever possible
by providing architectural support for static branch
predict,ion. St,atic branch prediction in PLUM requires
very little extra hardware because the mechanism is
similar to choicepoint creation and backtracking.

2.1. Multiple Specialized Functional Units

The short pipelines of most processors allow only
limited overlap of operations. Figure 2.1 illustrates
how multiple function units increase the overlap of
opera.tions that require multiple cycles to execute. On
an average, the Berkeley PLM instructions execute in
a.bout, 7 cycles [6], but consecut,ive instructions are
overlapped by only one cycle (microinstruction execu-
t.ion is a.lso overlapped by pipelining in the microen-

196

prefetcb El q El PI
execute Is IibJI

func. unit 2 I b I/h 110 I

func. unit. 3 I c II j II 9

func. unit 4 -((k

func. unit 3 e I P

func. unit 6 IIllm I

he. unit 7 ttr I LP

(b) Multiple functional units increase overlap

Figure 2.1: Muhiple Functional Units Increase Over-
lap

gine). Potentially, therefore, a speedup of up to 7
could be achieved by multiple function units. How-
ever, because of stalls due to dat.a dependencies and
branches in the execution stream, we do not expect to
achieve complete overlap of instructions. Each func-
tion unit. in PLUM has specialized hardware that
enables it t,o execute a particular set of tasks
rfli&nt.ly.

2.2. Data Driven Control

PLUR4 uses data driven control to resolve data
dependencies between instructions. An instruction can
esecute when its operands are available. Instructions
may execute out of order. Instruction dispatch can,
t.herefore, cont,inue beyond a stalled instruction. Addi-
tional parallelism is exploited because subsequent
ir1st.ruction.s may be independent of the stalled instruc-
tion and can execute on other function units.

As mentioned earlier,, PLUM uses registers to pass
arguments to procedures mstead of passing them in a
call frame. There are two reasons for this choice.
First, access to registers is faster than access to
memory. Second, data driven control requires some
hardware to indicate whether or not an argument is
valid, usually a “valid bit” for each datum. Valid bits
for the entire memory are expensive and slow (since
t.he valid bits must be reset whenever stack space is
reclaimed). Valid bits for a small number of registers
are ea.sier to implement. The disadvantage of registers
is that they ha.ve to be saved in memory in
choicepoints and environments. With suitable
buffering, a.nd with parallel execution of choicepoint
and environment instructions, copying and restoring
regist,ers from memory is overlapped with other opera-
tions and usually does not slow down execution of a
program.

2.3. Partitioned Memory

Since Prolog execution is memory intensive, high
performa.nce Prolog processors must provide a high
bandwidth access to memory. With multiple function
units executing in parallel, PLUM’s memory

bandwidth requirement is even greater. In order to
provide this bandwidth, each function unit has its own
port to memory. A shared memory that can be
accessed in pa.rallel through multiple ports is either
expensive or slow. In PLUM, the memory is parti-
tioned so that each type of specialized function unit
accesses only one partition of memory, and there is no
sharing among partitions. This means that the
memory ca.n be easily implemented as multiple
modules, one for each partition, that can be accessed
in pa.rallel.

3. Architecture and Implementation

3.1. Architecture Description

PLUM’s architecture is similar to the WAM. Like
the WAM, da.ta types are specified by tag fields in
data words. A PLUM data word is 32 bits wide. Each’
data word has a $-bit type tag and 28-bit va.lue field.
The types are listed in table 3.1. List and structure
data types contain pointers to lists and structures
respectively. Lists consist of elements and links (which
have list tags). A list ends with a word in the link
position t,hat does not dereference to a list. Although
PLUM’s storage model is also similar to the WAM,
PLUM’s memory part.itioned as described section 3.1.1.
PLUM’s regist,ers organization is quite different from
the WAh4 and is described in section 3.1.2. The
PLUM instruction set is described in section 3.2.

Table 3.1: Data Types in PLUM

1 bound variable (reference)
2 list

3.1.1. Memory Organization

The PLUM has 3 separate address spaces . _
(memory partitions): the choicepoint stack, the
environment stack, and a global address space. The
global address space contains 4 memory areas: code,
heap, trail and system memory. The system memory
is used by the operating system. The PLUM architec-
ture does not specify a memory area for the pvsh
down Iist (PDL), a stack used in the unification of
nested lists and structures. A PWJM implementation
provides memory spa.ce for one or more PDLs either in
a separate memory area or in a part of shared
memory. Multiple PDLs are useful because several
Unification LJnits could. unify nested struct,ures in
parallel.

Tick’s measurements [15] show that about SO per-
cent, of all data memory accesses in Prolog programs
are to the choicepoint stack and a.bout 25 percent to
t.he environment. stack. Separate address spa.ces for
t.he choicepoint and environment areas greatly reduce
the memory traffic that would otherwise compete with
accesses to t,he global memory. In our implrmenta-

197

tion, only the global memory is accessed by multiple
function units. Overheads due to cache coherence will
only apply to this area which accounts for only about
25 percent of data accesses.

3.1.2. Register Sets
The instruction set of the PLUM is based broadly

on the WAM but registers are treated quite differently
so that procedure executions are pipelined as in POPE
[I]. A procedure has access to two register sets: a
source or input register set, and a destination or out-
put register set. A procedure only writes to the
output register set. The output register set of one pro-
cedure becomes the input register set of the next pro-
cedure. The number of register sets is not specified by
the architecture. In fact the architecture may assume
a very large number of sets and the implementation
must ensure that it appears that way.

Table 3.2: PLUM Registers

Name Register
RO-R7(in,out) Argument registers(input, output)
CP(in,out) Continuation pointer
E(in,out) Environment pointer
TE(in,out) Top of Environment stack
B(in,out) Backtrack pointer
TR(in,out) Trail Pointer
H(in,out) Heap pointer
L(in,out) Alternate address
P Procram counter

Table 3.2 lists the registers in each PLUM register
set. Apart from the input and output argument regis-
ters, there are registers in the input and output set
with special functions. The Continuation Pointer (CP)
contains the address of the next instruction to execute
should the current goal succeed. The Environment
Pointer (E) points to the current environment on the
environment stack. The TE register points to the top
of the environment stack. Note that, unlike the PLM,
the PLUM has separate stacks for the environments
and choicepoints. The TE register is necessary
because the environment stack is not a true stack and
the current environment may not be on the top of the
environment stack. The backtrack Pointer (B) points
to the last choicepoint on the choicepoint stack. The
Trail Pointer (TR) points to the top of the trail stack.
The Heap Pointer (H) points to the top of the heap.
The L register contains the address of the next instruc-
tion to execute should the current goal fail. In addi-
tion to these registers, there is a Program Counter (P).
Memory addresses that appear as arguments in PLUM
instructions are offsets from the current value of P.

An important feature of a register set is that it
acts as a buffer for the environment and choicepoint
because its registers are only written once. Thus,
environment and choicepoint instructions can execute
after the rest of the instructions for the register set
have completed.

3.2. The Instruction Set
Table 3.3 lists the PLUM instructions. They are

similar to the Berkeley PLM instructions. We describe

them briefly here (see [7] for more details on the PLM
instruction set).

Table 3.3. PLUM Instruction Set

Indexing
swot Reg,Lv,Lc,Ll,Ls
swoc Reg,Hashtable
swos Reg,Hashtable
Get
getvaI(type) R&R2
getconst(type) R,C
getlist(type) R,L
getstruct(type) R,S

Procedure Control
trvelse T.L
retryelse ‘T,L
predictelse T,L
trust T
fail
cut
cutd
nocp

Miscellaneous (inc
add Rl, R2, Rd
inc Rl, Rd
mu1 Rl, R2, Rd
cgtz RI
cgtr Rl,R2

:0

I

Load and Save
load Reg,Y
save Reg,Y
asave Reg,Y
Put
putval Rl,R2
putconst R,C
putlist R,L
putstruct R,S
putvar R
Clause Control
proceed
execute P
dexecute P
calls P
acalls P
allocate N

sub R1. R2. Rd
dec Rlj Rd’
deref Rl, R2
clsz Rl
ceql Rl, R2

3.2.1. Indexing, Clause and Procedure Control
Instructions

The indexing instructions are used to filter the set
of candidate clauses ba.sed on the type and value of
input argument registers. The procedure control
instructions create and manipulate choicepoints. The
predictelse instruction is used for static branch predic-
tion (to select one of several clauses to try). The
branch destination is checked during subsequent head
unification of the clause. Whenever possible, a com-
piler should use static branch prediction instead of
indexing instructions, since the indexing instructions
cause instruction dispatch to stall (unless the

implementation a.lso supports dynalmic branch predic-
tion of indexing instructions). The nocp (no
choicepoint operation) instruction is. used if there is no
choicepoint or prediction instruction to load the out-
put B register. The clause control instructions deal
with environment allocation and deallocation, and
control transfer associated with procedure calls and
returns. The acalls instruction is similar to the calls
(procedure call) instruction except. that it does not
transfer the input E and TE registers to the output set
like the calls instruction. It is used if there is an ullo-
cute instruction preceding it in the current set which
loa.ds new values of the E and TE: registers into the
output set. The dexecute instruction is similar to the
execute instruction except that it also deallocates the
current environment.

3.2.2. Get and Put Instructions

The gel instructions unify arguments of the clause

198

head with the arguments of the goal (available in the
input argument registers). The put instructions are
used to load arguments of a goal or procedure. The
get instructions have two “type” attributes. The
“shared” attribute implies that the unification must
get exclusive access to every variable that it binds
because that variable could be shared with another
unification. Static analysis of programs, as proposed
by Citrin [4], can be used to determine which
unifications could potentially share unbound variables
with other unifications, and only these unifications
need incur the overhead of synchronization before
binding variables. The “check” attribute requires that
the instruction first check that the type of the input
argument is appropriate. The “check” attribute is
used to check if a predicted branch destination is
correct.

3.2.3. Get and Put for Lists and Structures

Unlike the WAM and the PLM, the getlist,
putlist, getstrnct and putstruct instructions are not
followed by uni/y instructions. Instead, each list and
structure unification is treated as a single instruction.
Each instruction contains a pointer to a list of words
in code space that describe elements of the list or
structure. These list and structure descriptions are
different from other instructions in that they are not
dispatched to Unification Units, but rather they are
fetched directly from memory by the Unification Unit
that executes the list or structure get or put instruc-
tion.

3.2.4. Load and Save Instructions

Unlike the Berkeley PLM, the get and put
instructions cannot have permanent variables in the
environment as arguments. This allows the environ-
ment memory area to be treated as a separate address
space inaccessible to the Unification Units. The load
instruction loads an argument register with a per-
manent variable from the environment, and the save
instruction saves an argument register in the environ-
ment as a permanent variable. The asave instruction
is similar to the save instruction except that it is used
if an environment has been allocated in the current set
(in which case the input E register does not point to
the current environment, but the input TE register
does).

3.2.5. Miscellaneous Instructions

The miscellaneous instructions include arithmetic
and logic operations, as well as simpIe general purpose
instructions that could be used to implement builtin
operations of Prolog. Instructions such as cgtz (which
succeeds if the argument is greater than zero and fails
otherwise) can also be used to check that a particular
clause was correctly predicted.

3.3. Implementation

3.3.1. Overview

Figure 3.1 is an overview of a PLUM implementa-
tion. A Prefetch Unit fetches, buffers and dispatches
instructions to appropriate functional units. The
Choicepoint Unit and Environment Unit access and
manipulate the choicepoint and environment stacks
respectively. Several Unification Units execute

199

instruction bus

Figure 3.1: Overview of the PLUM microarchitecture.

unification instructions as well as some simple arith-
metic instructions. An Arithmetic Unit performs more
complicated arithmetic operations (such as floating
point instructions). A Trail Unit trails variables
bound by the Unification Units and performs the de-
t,rsil operation during backtracking.

3.3.2. Multiple Register Sets
The PLUM architecture assigns a new register set

for the outputs of instructions each time a procedure
boundary is crossed. A practical implementation can
provide only a limited number of register sets. The
microarchitecture described in this section provides a
few (we think 4 are sufficient) register sets, simulating
a large number of register sets by re-using them. The
register set numbers “wrap around”, and each register
set IS reset so that a.11 its registers are marked invalid
brfore it is re-used. The Prefetch Unit appends the
physical set number to each instruction that it
dispatches to functiona. unit,s.

3.3.3. Data Driven Control

Each regist,er has a valid bit associated with it,
and t.he valid bits a.re used to implement the dat,a
driven control. An instruction can only execute when
it,s input operands are valid. Some instructions need
t,o wait for implicit operands (tl1a.t are not specified
explicitly in the instruction). For example, a
unification cannot allocate space on the heap unt.2 all
Ihe hrap space for the previous goal has been allocated
in order to prevent interleaving of data for different
goals on t,he heap. The Unification Unit must wait
until the input heap register for it.s set is valid, and
t.he input heap register is loaded by the previous goa.
when it requires no more heap space.

Each functional unit contains a shadow copy of
all t.he rckgister sets (we refer t.o :>I1 t.he register sets

together as t.he register file). The microarchitecture
maintains consistent copies of the tcgistrr file in all the
functiona. units by insisting that registers in the file
can only be written over shared busts. The PLUM

has t,wo buses: the register-write bus is used to write
the argument registers, and the special-write bus is
used t,o write the other registers. The functional units
arbitrate for the use of a bus one cycle before they use
the bus.

4. Simulation Results and Analysis

We have written a register transfer level simula-
tor for PLUM in order to estimate the performance of
the implementation and evaluate various design
choices. The measurements described below demon-
strate that PLUM achieves an a.verage speedup of 3.4
over the Berkeley VLSI-PLM, a specialized pipelined
processor for Prolog.

4.1. Assumptions and Benchmarks

The PLUM simulator accepts the access times of
each memory port and the number of Unification
Units as inputs. The shared memory (connected to
the ports of the Prefetch Unit, Unification Units, and
Trail Unit) is treated as a multi-port memory for pur-
poses of simulation. Since a multi-port memory is
expensive, an actual implementation would use one of
several memory systems, depending on the desired cost
and performance. to allow parallel access to a shared
memory. For example, one option is to use caches at
each port connected t,o a shared bus. A cache coher-
ence protocol can be used to ensure that shared data
are kept consistent. Another option is to have multi-
ple memory modules connected to the processors by an
interconnection network such as a cross-bar switch.
These and other options have lower performance than
a multi-port memory with the same access time, but
we believe that the performance degradation is small.
Memory traces from the simulator can aid in evaluat-
ing performance degradation with various memory sys-
t.em designs, but t,hat is beyond the scope of this
paper.

The simulator models a branch ta.rget instruction
buffer (4 lines, 16 words per line) and a 16 word pre-
fetch buffer in the Prefetch Unit. The Trail Unit con-
tains an 8 word trail buffer and each Unification Unit
cont.ains a.n 8 word prefetch buffer to hold elements of
lists and structure unifications from the code space.
They have been included in the simulator so that the
performance measurements are not degraded by fac-
tors that can easily be eliminated by small and simple
buffers that are common in modern tzSI processors.
At the same time, the simulation models the perfor-
mance degradation that can be expected due to misses
in buffers. Since our simulations are run with cold
starts (the buffers a.re initially empty), the perfor-
mance of a program with a short execution time is
usually degraded more than that of a longer program.

We present measurements on four benchmarks
that have commonly been used in compa.ring the per-
formirnce of Prolog systems. C~otzcat is a small pro-
gram that concatenates a list of 3 elements to a list of
6 elements. Na?~oi computes the solution to the
“towers of Hanoi” puzzle for 8 disks , nrevl reverses a
list of 30 elements, and qsd sorts a. list of SO integers
using the quicksort algorithm.

4.2. Effect of Multiple Unification Units

In figure 4.1 we plot PLUM’s performance (rela-

tive to the performance of PLUM with 1 Unification
Unit and 1 cycle memory access) for each benchmark,
and figure 4.2 is a similar graph for the average of all
the benchmarks. Performance is measured as the
reciprocal of the number of execution cycles, and the
number of cycles for the average is the sum of the
cycles for each benchmark. Figures 4.1 and 4.2 show
that PLUM’s performance improves with additional
Unification Units, but the performance improvement is
small beyond three Unification Units for the
benchmark programs chosen. Programs with more
unifica.tion parallelism can be expected to benefit more
from multiple Unification Units. Such programs usu-
ally have a large number of complex argument
unificat,ions in each goal.

4.3. Effect of Memory Access Time

Figure 4.3 shows how PLUM’s performance (rela-
tive to the performance of PLUM with 1 Unification
IJnit and 1 cycle memory access time) on each bench-
mark is affected by memory access time. In these
measurements we assume that the memory access time
on all memory ports is the same. Figure 4.4 shows the
effect on the average performance. The figures show
that PLUM’s performance degrades slowly with
increasing memory access time. This suggests that a
PLUM implementation will perform quite well even if
t,he memory system’s effective memory access time is
more than 1 cycle (for example, due to cache misses
and synchronization for shared data).

The hanoi benchmark behaves differently from
the other benchmarks. Unlike the other benchmarks,
unification is not the bottleneck to hanoi’s perfor-
mance, and none of the Unification Unit instructions
in the benchmark access memory. As memory access
time increases, therefore, the performance is deter-
mined almost completely by the Choicepoint, Environ-
ment and Prefetch Units, and the curves for various
numbers of Unification Units merge.

4.4. Comparison with the Berkeley VLSI-PLM

Table 4.1 compares the performance of the VLSI-
PLM (using a simulator that assumes a 1 cycle
memory access and 1OOnsec clock cycle) with that of
PLUM (using a simulator with 3 Unification Units, 1
cycle memory access and 1OOnsec clock cycle). On
some benchmarks, PLUM’s speedup over the VLSI-
PLM cannot be attributed only to fine grain parallel-
ism. The VLSI-PLM has little support for arithmetic
operations and comparisons. For example, the VLSI-
PLM’s performance on the hanoi benchmark can be
improved by approximately 0.7 millisec (13.4 percent)
by an improved instruction set for arithmetic. Table
4.1 shows that PLUM achieves a speedup of 3.42 over
the VLSI-PLM averaged over the benchmarks chosen.

Table -l.i. Comparison of VLSI-PLM and PLUM

lk,nchmark I VLSI-PLM I mw
1 Execut.ion Time (millisec)

(1”. 4 1 4.304 j 1.28 1 3.3G average 1 11.67 1 3.41-4 (3.12 J

200

1 2 3 4
Number 01 Unification Units

1 2 3 4
Number of Unification Units

ff 2.00 . ..j .I

t

j :

: *.so i / i

t
,l.cy.mem

f

‘:

1,oo

T : o.50
e

Number of Unidcrtion Units

Fig. 4.1: Effect of Multiple
Performance
2.50 .-.. 9s.j.

1 / /
.I i

I 2 3 4 I
Memory .Acress Tiuw (ryrles)

2 3 4
Memory Access l’ime (cycles)

Fig.43 Effect of Memory
mance

Access Time on Perfor-

3,50 3,50 nyv 1 nrev 1 ; ; .
1 i /i-fLcy-mem ,Lcymmem

7 7
; i ; /

2.00 2.00 ;. ;. [j I j

t t
! ! i... ..>,.< i... ..>,.< -? - - - +2 E -? - - - +2 E

,,so ,,so ,; ,; .._... i .._... i

I? k

- - Y- Y- men men

! !

:, i :, i j j

f f ,,M) ,,M) ,..<..3 ,..<..3
&cymmem &cymmem

A ’ A ’

,:;~:‘:‘:~,~ry*mem ,:;~:‘:‘:~,~ry*mem

A,--” : A,--” : ! !
3 3 ,/ / ,/ /
; ; O,JO O,JO y-T i / y-T i / / /
e e j : j :

: j : j

o.ooJ
1 2 3 4

Number ol Unificalioo Units

Unification Units on

I 2 3 4
Memory Access Time (cyclc~)

cy- mem

cy. mem

cy. mem
cy. mem

0.004 -I
1 I 0 3 4

Number of Unification Units

Fig. 4.2: Effect of Multiple Unification Units on
Average Performance

g-. gi!
2: unif

I- unif

,
1 2 3 4

Memory PLccess Time (cydes)

Fig. 4.4: Effect of Memory Access Time on Average
Performance

Although we feel that execution times are more
a.ppropriate measures of Prolog processor performance,
it has unfortunately become customary to report the
LIPS (Logical Inferences Per Second) that a processor
can achieve. Table 4.2 lists the KLIPS (Kilo LIPS)

that, PLUM with 3 Unification Units achieves on the
benchmark set using different clock cycle lengths and
memory access times. With current CMOS technology
and memory speeds, an implementation of PLUM with
50 nsec clock cycle and 1 cycle memory access is feasi-
ble. With these assumptions, PLUM achieves 1102
KLIPS.

201

Table 4.2. KLIPS Rates for PLUM (with 3 Unil. Units)

Clock Cycle I 1OOnsec I 50nsec 1
Mem. Access (cycles) 1 2 1 1 j 2

Benchmark I I

5. Summary and Conclusions

We have described the architecture and imple-
mentation of PLUM, a high performance processor for
Prolog that exploits fine grain parallelism by executing
instructions in parallel on multiple specialized function
units, each of which can be implemented on a single
VLSI chip. PLUM achieves a speedup of approxi-
mately 3.4 over the Berkeley VLSI-PLM averaged over
a set of benchmarks. Performance of PLUM improves
with additional Unification Units but the performance
improvement is small beyond three Unification Units
for the benchmarks chosen. The amount of parallel-
ism that can be exploited by multiple Unification Units
varies from program to program. However, even pro-
grams without sufficient unification parallelism per-
form well because of parallel execution of choicepoint
and environment instructions. PLUM’s performance
degrades slowly with increasing memory access time,
indicating that it will perform well with a wide range
of memory systems.

We are currently optimizing the microcode for
each function unit and running simulations on a larger
and more diverse benchmark set. We are confident
that simulations on the larger benchmarks will result
in comparable or greater speedup than that observed
in this paper.

Acknowledgement

Sponsored by Defense Advanced Research Pr+
jects Agency under Contract Nos. N0039-84-C-0089
and N00014-88-K-0579

The authors also wish to thank Zycad Corpora-
tion for the use of their Endot N.2 hardware simula-
tion tools that greatly simplified the task of simulating
PLUM.

References

1. J. Beer, Concepts, Design, and Performance
Analysis of a Parallel Prolog Machine, PhD
thesis, Technical University, Berlin, .

2. M. Carlton and P. V. Roy, A Distributed Prolog
System with AND-Parallelism, Proceedings of
Hawaii International Conference on System
Science 88, Honolulu, Hawaii, January, 1988.

3. c. Chen, A. Singhal and Y. N. Patt, PUP: An
Architecture to Exploit Parallel Unification in
Prolog, (submitted for publication.), 1988.

4. W. Citrin, Parallel Unification Scheduling in
Prolog, PhD thesis, University of California,
Berkeley, Berkeley, California, 1988.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

J. S. Conery, The AND/OR Model for Parallel
fnberpretation of Logic Programs, PhD t/z&s,
Dept. of Information and Compu.ter Science,
university of California, Irvine, 1983.
T. Dohry, A High Performa.nce Architecture for
Prolog, PhD thesis, Vniversi,ty of California,
Berkeley, Berkeley, California, 1987.
B. Fagin and T. Dobry, The Berkeley PLM
Intruction Set: An Instruction Set for Prolog,
Report No. UGB/Computer Science Dpt.
86/257, Computer Science Di,vision, University
of California, Berkeley, September 1985.
B. S. Fagin, A Parallel Execution Model for
Prolog, PhD thesis, Computer Science Division.

Uno’v. of California, Berkeley, November, 1987.
Available as Tech. Report, UCB/Computer
Science Dpt./87/380.
R. Hasegawa and M. Amamiya, Parallel
Execution of Logic Programs baaed on Dataflow
Concept, Proceedings of &he International
Conference on Fifth Generation Computer
Systems, 1984, 1984, 507-516.
M. V. Hermenegildo, An Abstract Machine for
the Restricted AND-Parallelism of Logic
Programs, Third International Conference on
Logic Programming, July, 1986, 25-39.
N. Ito, H. Shimizu, M. Kishi, E. Kuno and K.
Rokusawa, Data-flow Esased Execution
Mechanisms of Parallel and Concurrent Prolog,
New Generation Computing 9 (1985), 15-41,
OHMSHA, LTD and Springer-Verlag.
Y. N. Patt, W. Hwu and M. 6. Shebanow, HPS,
A New Microarchitecture: Rationale and
Introduction, Proceedings of the 18th
International Microprogramming Workshop,
Asilomar, California, December, 1985.
J. Syre and H. Westphal, A Review of Parallel
Models for Logic Programming Languages,
Technical Report CA-07, European Computer
Industry Research Centre, GmbH, Arabellastr,
17, D-8000 Muenchen 81, West Germany, 10
June 1985.
E. Tick and D. Warren, Towards a Pipelined
Prolog Processor, 19134 International
Symposium on togic Programming, February
1984.
E. Tick, Studies in Prolog Architectures, Phd
thesis (also Technical Report No. CSL-Tech.
Rep.-87-329, Computer qystems Laboratory,
Stanford University), Stanford, California, June,
1987.
R. M. Tomasulo, An Efficient Algorithm for
Exploiting Multiple Arithmetic Units, IBM
Journal of Research and Development 11
(1967).

D. H. D. Warren, An Abstract Prolog Instruction
Set, Technical Report 3009, Artificial Intelligence
Center, SRI International, 1.983.

202

