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ABSTRACT 

We describe the Parallel Unification Machine 
(PLUM), a Prolog processor that exploits fine grain 
parallelism using multiple function units executing in 
parallel. In most cases the execution of bookkeeping 
instruct,ions is almost completely overlapped by 
unification, and the performance of the processor is 
limited only by the available unification parallelism. 
We present measurements from a register transfer 
level simulator of PLUM. These results show that 
PLUM with 3 Unification Units achieves an average 
speedup of approximately 3.4 over the Berkeley VLSI- 
PLM, which is usually regarded as the current highest 
performance special purpose, pipelined Prolog proces- 
sor. Measurements that show the effects of multiple 
Unification Units and memory access time on perfor- 
mance are also presented. 

1. Introduction 

The growing interest in logic programming and 
Prolog, has resulted in substantial research towards 
t.he design of high performance Prolog systems by tak- 
ing advantage of parallel hardware. Many research 
groups are trying to exploit parallelism available in 
Prolog programs by executing parallel processes on 
multiple processors [2,5,8-lo]. Others have tried to 
exploit parallelism of a finer grain size by overlapping 
the execution of instructions of a single Prolog process 
by means of special purpose, pipelined processors 
16,141. Since the pipelines in these processors are quite 
short, instructions are overlapped only to a very lim- 
ited extent. A large fraction of the execution time of 
such processors is spent on control and bookkeeping 
instructions, instead of unification (an operation simi- 
lar to pattern matching that performs most of the 
“useful work” in a Prolog program). In this paper we 
demonstrate that a processor with multiple function 
units can overlap execution of many more instructions, 
and thus achieve a much larger speedup over 
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sequential pipelined processors. Bookkeeping opera- 
tions can overlap almost completely with unification, 
and several unifications can also execute in parallel. 
We describe one such processor, the Parallel 
Unification Machine (PLUM), and present performance 
measures obtained by register transfer level simula- 
tion. Each function unit of PLUM can be imple- 
mented by a VLSI chip of moderate complexity with a 
clock frequency comparable to modern single chip 
microprocessors. 

Before proceeding with the description of PLUM, 
we provide the necessary background for this paper: a 
brief description of Prolog, a description of the execu- 
tion and storage model used by PLUM, an introduc- 
tion to the sources of parallelism in Prolog programs, 
and a summary of relevant literature. In section 2 we 
describe the main principles used in the PLUM design. 
We describe PLUM’s architecture and implementation 
in section 3. Simulation results and analysis are 
presented in section 4. Section 5 concludes the paper 
with a summary of our results and a discussion of 
work in progress. 

1.1. A Brief Description of Prolog 
Prolog programs consist of a collection of clauses 

and a goal. The first goal is also called a query. The 
program is executed by the Prolog system by trying to 
satisfy the goal using the clauses in the program. 
Clauses have a head and an optional body that consists 
of one or more goals. Goals and clause heads are 
represented by terms. Terms may be simple or com- 
plex. Complex terms are structures (a list is a special 
ca.se of a structure); each consists of a functor (name 
and arity of the term) and one or more arguments. 
The arguments are themselves terms. Simple terms 
are atoms or variables. The unification of two terms 
is the process by which the variables in the terms are 
bound such that the two terms become identical. Pro- 
log finds the smallest such set of bindings (this set is 
unique). A goal succeeds if it unifies with a clause 
head and if all the goals in the body of the clause also 
succeed when executed in sequence. If no such clause 
exists, the goal fails. In order to execute a goal, Pro- 
log tries each clause in the program in sequence. Since 
a goal can never unify with a clause whose head has a 
different functor, only clauses that have the same func- 
tor in their heads need be tried. The collection of such 
clauses is called a procedure. Thus, a goal is a pro- 
cedure call. If a procedure has more than one clause 
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that could potentially satisfy a goal, Prolog tries the 
candidate clauses in sequence until a clause succeeds 
or there are no more clauses to try. Before trying one 
of several candidate clauses, the state of the program 
must be saved in a choicepoint so that the state can be 
restored if the clause fails and another clause must be 
tried. The process by which the state is restored on 
failure is called backtraclcing. Backtracking imple- 
ments Prolog’s left to right, depth first search for a 
soIution to the query. 

1.2. PLUM’s Prolog Execution Model 

PLUM’s execution model is based on that of the 
Warren Abst.ract Machine (WAM) [17]. Conventional 
procedural languages, such as C, have a stack on 
which call frames are stored. A call frame contains 
information such as the return address and procedure 
arguments. Values of registers may also be saved in 
the call frame by the caller so that the registers may 
be restored when control returns to the caller. PLUM 
also has a memory area in which call frames (called 
environments) are stored. Although we refer to this 
area as the “environment stack”, it is not really a true 
st,ack. In conventional programming languages the 
call frame could be deallocated from the stack when 
cont.rol returns from the callee, and the stack space is 
recla.imed. Prolog, however, may have to backtrack to 
the environment of the procedure to try another 
clause. This can happen if a choicepoint is created 
after t.he environment frame is created, and in that 
case the memory space occupied by t.he environment 
cannot be reclaimed when control returns from the 
callee. Therefore, the current environment frame is 
not necessarily on top of the environment area, as 
required by a true stack. 

Prolog also needs to provide st,ora,ge for 
choicepoints to implement, backt.racking. Since back- 
tracking uses a depth first search strategy, the 
choicepoints may be stored on a stack. Environments 
and choicepoints may be placed in separate stacks (as 
in PLIJRI) or in the same stack (as in the PLM IS]). 

Prolog creates it data structures, including 
unbound variables in a memory area called the heap. 
The heap space is allocated and deallocated as a stack 
as a simple means of garbage coilection. In addition to 
state saved in a choicepoint, Prolog needs to keep 
track of all bindings of variables on the heap made 
after each choicepoint so that these bindings can be 
undone when backtracking to the choicepoint. This is 
accomplished by saving the addresses of the variables 
tha.t are bound after each choicepoint on another stack 
called the trail. The location of the top of t.he trail 
stack at the time the choicepoint is created is saved in 
the cboicepoint. All variables whose addresses are in 
t.he trail stack above the location saved in the 
choicepoint are unbound when Prolog backtracks to 
the choicepoint. Yet another stack, the push down 
list (PDL), is used by the unification algorithm for 
nested 1ist.s and structures. 

Arguments could be passed to procedures either 
in registers (in which case the argument registers must 
be saved in choicepoints), or in an environment frame 
in memory (see [15] for a comparison of the two 
methods). PLUM uses argument registers for reasons 
that. will be explained in section 2. 

1.3. Fine Grain Parallelism in Prolog 

Several forms of parallelism can be exploited in 
Prolog programs [13]. AND parallelism is exploited 
when several goals of a clause are executed in parallel. 
OR parallelism is exploited when several clauses of a 
procedure are tried in parallel. The AND and OR 
branches of the solution tree are usually exploited by 
parallel processes. Parallelism of a finer grain is also 
present in Prolog. Unification parallelism is exploited 
when several arguments of the goal are unified in 
parallel with corresponding arguments of a clause 
head. Bookkeeping and control operations, such as 
choicepoint creat.ion and environment, allocation, can 
execute in pa.rallel with unification. Since unification, 
bookkeeping and control operations usually execute in 
far fewer cycles tha.n an AND or OR process, parallel- 
ism among them must be exploited with far less over- 
head in order to be useful. In PLUM fine grain paral- 
lelism is exploited by multiple function units. 

1.4. Related Work 

PLIJM evolved out of experiments with PUP [3]. 
\vhich also used multiple function units to exploit fine 
grain parallelism in Prolog, and with HPS [la], a res- 
t.ricted data flow architecture that uses the Tomasulo 
algorit.hm [IS] t.o control mult.iple function units. 
PLUM’s register set and pipeline control design 
benefited from the design of the POPE processor [I]. 
POPE exploits fine grain parallelism only across pro- 
cedure boundaries by executing each procedure on a 
separate processor. PLUM’s storage model and 
abstract machine are based on the Warren Abstract 
Machine (WAM) [17]. Ito et al [l:l] and Hasegawa et 
al [S] have proposed data flow machine for logic pro- 
gramming languages that exploit fine grain parallelism. 
Citrin [4] proposes a static data dependency analysis 
to determine which unifications of a clause head are 
known to be independent at compile time, and can be 
scheduled to run in parallel. 

2. Design Philosophy 

PLUM’s design is based on three main principles: 
using multiple function units to execute instructions in 
parallel, using data driven control of the function units 
so that operations may execut.e whenever their 
operands are available, and partitioning memory to 
increase available memory bandwidth and reduce the 
sha.ring of memory among function units. In this sec- 
t.ion we justify these principles. In addition to this 
design philosophy, PLUM is designed to eliminate 
st,ahs in instruction dispatch pipeline wherever possible 
by providing architectural support for static branch 
predict,ion. St,atic branch prediction in PLUM requires 
very little extra hardware because the mechanism is 
similar to choicepoint creation and backtracking. 

2.1. Multiple Specialized Functional Units 

The short pipelines of most processors allow only 
limited overlap of operations. Figure 2.1 illustrates 
how multiple function units increase the overlap of 
opera.tions that require multiple cycles to execute. On 
an average, the Berkeley PLM instructions execute in 
a.bout, 7 cycles [6], but consecut,ive instructions are 
overlapped by only one cycle (microinstruction execu- 
t.ion is a.lso overlapped by pipelining in the microen- 
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gine). Potentially, therefore, a speedup of up to 7 
could be achieved by multiple function units. How- 
ever, because of stalls due to dat.a dependencies and 
branches in the execution stream, we do not expect to 
achieve complete overlap of instructions. Each func- 
tion unit. in PLUM has specialized hardware that 
enables it t,o execute a particular set of tasks 
rfli&nt.ly. 

2.2. Data Driven Control 

PLUR4 uses data driven control to resolve data 
dependencies between instructions. An instruction can 
esecute when its operands are available. Instructions 
may execute out of order. Instruction dispatch can, 
t.herefore, cont,inue beyond a stalled instruction. Addi- 
tional parallelism is exploited because subsequent 
ir1st.ruction.s may be independent of the stalled instruc- 
tion and can execute on other function units. 

As mentioned earlier,, PLUM uses registers to pass 
arguments to procedures mstead of passing them in a 
call frame. There are two reasons for this choice. 
First, access to registers is faster than access to 
memory. Second, data driven control requires some 
hardware to indicate whether or not an argument is 
valid, usually a “valid bit” for each datum. Valid bits 
for the entire memory are expensive and slow (since 
t.he valid bits must be reset whenever stack space is 
reclaimed). Valid bits for a small number of registers 
are ea.sier to implement. The disadvantage of registers 
is that they ha.ve to be saved in memory in 
choicepoints and environments. With suitable 
buffering, a.nd with parallel execution of choicepoint 
and environment instructions, copying and restoring 
regist,ers from memory is overlapped with other opera- 
tions and usually does not slow down execution of a 
program. 

2.3. Partitioned Memory 

Since Prolog execution is memory intensive, high 
performa.nce Prolog processors must provide a high 
bandwidth access to memory. With multiple function 
units executing in parallel, PLUM’s memory 

bandwidth requirement is even greater. In order to 
provide this bandwidth, each function unit has its own 
port to memory. A shared memory that can be 
accessed in pa.rallel through multiple ports is either 
expensive or slow. In PLUM, the memory is parti- 
tioned so that each type of specialized function unit 
accesses only one partition of memory, and there is no 
sharing among partitions. This means that the 
memory ca.n be easily implemented as multiple 
modules, one for each partition, that can be accessed 
in pa.rallel. 

3. Architecture and Implementation 

3.1. Architecture Description 

PLUM’s architecture is similar to the WAM. Like 
the WAM, da.ta types are specified by tag fields in 
data words. A PLUM data word is 32 bits wide. Each’ 
data word has a $-bit type tag and 28-bit va.lue field. 
The types are listed in table 3.1. List and structure 
data types contain pointers to lists and structures 
respectively. Lists consist of elements and links (which 
have list tags). A list ends with a word in the link 
position t,hat does not dereference to a list. Although 
PLUM’s storage model is also similar to the WAM, 
PLUM’s memory part.itioned as described section 3.1.1. 
PLUM’s regist,ers organization is quite different from 
the WAh4 and is described in section 3.1.2. The 
PLUM instruction set is described in section 3.2. 

Table 3.1: Data Types in PLUM 

1 bound variable (reference) 
2 list 

3.1.1. Memory Organization 

The PLUM has 3 separate address spaces . _ 
(memory partitions): the choicepoint stack, the 
environment stack, and a global address space. The 
global address space contains 4 memory areas: code, 
heap, trail and system memory. The system memory 
is used by the operating system. The PLUM architec- 
ture does not specify a memory area for the pvsh 
down Iist (PDL), a stack used in the unification of 
nested lists and structures. A PWJM implementation 
provides memory spa.ce for one or more PDLs either in 
a separate memory area or in a part of shared 
memory. Multiple PDLs are useful because several 
Unification LJnits could. unify nested struct,ures in 
parallel. 

Tick’s measurements [15] show that about SO per- 
cent, of all data memory accesses in Prolog programs 
are to the choicepoint stack and a.bout 25 percent to 
t.he environment. stack. Separate address spa.ces for 
t.he choicepoint and environment areas greatly reduce 
the memory traffic that would otherwise compete with 
accesses to t,he global memory. In our implrmenta- 
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tion, only the global memory is accessed by multiple 
function units. Overheads due to cache coherence will 
only apply to this area which accounts for only about 
25 percent of data accesses. 

3.1.2. Register Sets 
The instruction set of the PLUM is based broadly 

on the WAM but registers are treated quite differently 
so that procedure executions are pipelined as in POPE 
[I]. A procedure has access to two register sets: a 
source or input register set, and a destination or out- 
put register set. A procedure only writes to the 
output register set. The output register set of one pro- 
cedure becomes the input register set of the next pro- 
cedure. The number of register sets is not specified by 
the architecture. In fact the architecture may assume 
a very large number of sets and the implementation 
must ensure that it appears that way. 

Table 3.2: PLUM Registers 

Name Register 
RO-R7(in,out) Argument registers(input, output) 
CP(in,out) Continuation pointer 
E(in,out) Environment pointer 
TE( in,out) Top of Environment stack 
B(in,out) Backtrack pointer 
TR(in,out) Trail Pointer 
H(in,out) Heap pointer 
L(in,out) Alternate address 
P Procram counter 

Table 3.2 lists the registers in each PLUM register 
set. Apart from the input and output argument regis- 
ters, there are registers in the input and output set 
with special functions. The Continuation Pointer (CP) 
contains the address of the next instruction to execute 
should the current goal succeed. The Environment 
Pointer (E) points to the current environment on the 
environment stack. The TE register points to the top 
of the environment stack. Note that, unlike the PLM, 
the PLUM has separate stacks for the environments 
and choicepoints. The TE register is necessary 
because the environment stack is not a true stack and 
the current environment may not be on the top of the 
environment stack. The backtrack Pointer (B) points 
to the last choicepoint on the choicepoint stack. The 
Trail Pointer (TR) points to the top of the trail stack. 
The Heap Pointer (H) points to the top of the heap. 
The L register contains the address of the next instruc- 
tion to execute should the current goal fail. In addi- 
tion to these registers, there is a Program Counter (P). 
Memory addresses that appear as arguments in PLUM 
instructions are offsets from the current value of P. 

An important feature of a register set is that it 
acts as a buffer for the environment and choicepoint 
because its registers are only written once. Thus, 
environment and choicepoint instructions can execute 
after the rest of the instructions for the register set 
have completed. 

3.2. The Instruction Set 
Table 3.3 lists the PLUM instructions. They are 

similar to the Berkeley PLM instructions. We describe 

them briefly here (see [7] for more details on the PLM 
instruction set). 

Table 3.3. PLUM Instruction Set 

Indexing 
swot Reg,Lv,Lc,Ll,Ls 
swoc Reg,Hashtable 
swos Reg,Hashtable 
Get 
getvaI(type) R&R2 
getconst(type) R,C 
getlist(type) R,L 
getstruct(type) R,S 

Procedure Control 
trvelse T.L 
retryelse ‘T,L 
predictelse T,L 
trust T 
fail 
cut 
cutd 
nocp 

Miscellaneous (inc 
add Rl, R2, Rd 
inc Rl, Rd 
mu1 Rl, R2, Rd 
cgtz RI 
cgtr Rl,R2 

:0 

I 

Load and Save 
load Reg,Y 
save Reg,Y 
asave Reg,Y 
Put 
putval Rl,R2 
putconst R,C 
putlist R,L 
putstruct R,S 
putvar R 
Clause Control 
proceed 
execute P 
dexecute P 
calls P 
acalls P 
allocate N 

sub R1. R2. Rd 
dec Rlj Rd’ 
deref Rl, R2 
clsz Rl 
ceql Rl, R2 

3.2.1. Indexing, Clause and Procedure Control 
Instructions 

The indexing instructions are used to filter the set 
of candidate clauses ba.sed on the type and value of 
input argument registers. The procedure control 
instructions create and manipulate choicepoints. The 
predictelse instruction is used for static branch predic- 
tion (to select one of several clauses to try). The 
branch destination is checked during subsequent head 
unification of the clause. Whenever possible, a com- 
piler should use static branch prediction instead of 
indexing instructions, since the indexing instructions 
cause instruction dispatch to stall (unless the 

implementation a.lso supports dynalmic branch predic- 
tion of indexing instructions). The nocp (no 
choicepoint operation) instruction is. used if there is no 
choicepoint or prediction instruction to load the out- 
put B register. The clause control instructions deal 
with environment allocation and deallocation, and 
control transfer associated with procedure calls and 
returns. The acalls instruction is similar to the calls 
(procedure call) instruction except. that it does not 
transfer the input E and TE registers to the output set 
like the calls instruction. It is used if there is an ullo- 
cute instruction preceding it in the current set which 
loa.ds new values of the E and TE: registers into the 
output set. The dexecute instruction is similar to the 
execute instruction except that it also deallocates the 
current environment. 

3.2.2. Get and Put Instructions 

The gel instructions unify arguments of the clause 
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head with the arguments of the goal (available in the 
input argument registers). The put instructions are 
used to load arguments of a goal or procedure. The 
get instructions have two “type” attributes. The 
“shared” attribute implies that the unification must 
get exclusive access to every variable that it binds 
because that variable could be shared with another 
unification. Static analysis of programs, as proposed 
by Citrin [4], can be used to determine which 
unifications could potentially share unbound variables 
with other unifications, and only these unifications 
need incur the overhead of synchronization before 
binding variables. The “check” attribute requires that 
the instruction first check that the type of the input 
argument is appropriate. The “check” attribute is 
used to check if a predicted branch destination is 
correct. 

3.2.3. Get and Put for Lists and Structures 

Unlike the WAM and the PLM, the getlist, 
putlist, getstrnct and putstruct instructions are not 
followed by uni/y instructions. Instead, each list and 
structure unification is treated as a single instruction. 
Each instruction contains a pointer to a list of words 
in code space that describe elements of the list or 
structure. These list and structure descriptions are 
different from other instructions in that they are not 
dispatched to Unification Units, but rather they are 
fetched directly from memory by the Unification Unit 
that executes the list or structure get or put instruc- 
tion. 

3.2.4. Load and Save Instructions 

Unlike the Berkeley PLM, the get and put 
instructions cannot have permanent variables in the 
environment as arguments. This allows the environ- 
ment memory area to be treated as a separate address 
space inaccessible to the Unification Units. The load 
instruction loads an argument register with a per- 
manent variable from the environment, and the save 
instruction saves an argument register in the environ- 
ment as a permanent variable. The asave instruction 
is similar to the save instruction except that it is used 
if an environment has been allocated in the current set 
(in which case the input E register does not point to 
the current environment, but the input TE register 
does). 

3.2.5. Miscellaneous Instructions 

The miscellaneous instructions include arithmetic 
and logic operations, as well as simpIe general purpose 
instructions that could be used to implement builtin 
operations of Prolog. Instructions such as cgtz (which 
succeeds if the argument is greater than zero and fails 
otherwise) can also be used to check that a particular 
clause was correctly predicted. 

3.3. Implementation 

3.3.1. Overview 

Figure 3.1 is an overview of a PLUM implementa- 
tion. A Prefetch Unit fetches, buffers and dispatches 
instructions to appropriate functional units. The 
Choicepoint Unit and Environment Unit access and 
manipulate the choicepoint and environment stacks 
respectively. Several Unification Units execute 
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Figure 3.1: Overview of the PLUM microarchitecture. 

unification instructions as well as some simple arith- 
metic instructions. An Arithmetic Unit performs more 
complicated arithmetic operations (such as floating 
point instructions). A Trail Unit trails variables 
bound by the Unification Units and performs the de- 
t,rsil operation during backtracking. 

3.3.2. Multiple Register Sets 
The PLUM architecture assigns a new register set 

for the outputs of instructions each time a procedure 
boundary is crossed. A practical implementation can 
provide only a limited number of register sets. The 
microarchitecture described in this section provides a 
few (we think 4 are sufficient) register sets, simulating 
a large number of register sets by re-using them. The 
register set numbers “wrap around”, and each register 
set IS reset so that a.11 its registers are marked invalid 
brfore it is re-used. The Prefetch Unit appends the 
physical set number to each instruction that it 
dispatches to functiona. unit,s. 

3.3.3. Data Driven Control 

Each regist,er has a valid bit associated with it, 
and t.he valid bits a.re used to implement the dat,a 
driven control. An instruction can only execute when 
it,s input operands are valid. Some instructions need 
t,o wait for implicit operands (tl1a.t are not specified 
explicitly in the instruction). For example, a 
unification cannot allocate space on the heap unt.2 all 
Ihe hrap space for the previous goal has been allocated 
in order to prevent interleaving of data for different 
goals on t,he heap. The Unification Unit must wait 
until the input heap register for it.s set is valid, and 
t.he input heap register is loaded by the previous goa. 
when it requires no more heap space. 

Each functional unit contains a shadow copy of 
all t.he rckgister sets (we refer t.o :>I1 t.he register sets 

together as t.he register file). The microarchitecture 
maintains consistent copies of the tcgistrr file in all the 
functiona. units by insisting that registers in the file 
can only be written over shared busts. The PLUM 



has t,wo buses: the register-write bus is used to write 
the argument registers, and the special-write bus is 
used t,o write the other registers. The functional units 
arbitrate for the use of a bus one cycle before they use 
the bus. 

4. Simulation Results and Analysis 

We have written a register transfer level simula- 
tor for PLUM in order to estimate the performance of 
the implementation and evaluate various design 
choices. The measurements described below demon- 
strate that PLUM achieves an a.verage speedup of 3.4 
over the Berkeley VLSI-PLM, a specialized pipelined 
processor for Prolog. 

4.1. Assumptions and Benchmarks 

The PLUM simulator accepts the access times of 
each memory port and the number of Unification 
Units as inputs. The shared memory (connected to 
the ports of the Prefetch Unit, Unification Units, and 
Trail Unit) is treated as a multi-port memory for pur- 
poses of simulation. Since a multi-port memory is 
expensive, an actual implementation would use one of 
several memory systems, depending on the desired cost 
and performance. to allow parallel access to a shared 
memory. For example, one option is to use caches at 
each port connected t,o a shared bus. A cache coher- 
ence protocol can be used to ensure that shared data 
are kept consistent. Another option is to have multi- 
ple memory modules connected to the processors by an 
interconnection network such as a cross-bar switch. 
These and other options have lower performance than 
a multi-port memory with the same access time, but 
we believe that the performance degradation is small. 
Memory traces from the simulator can aid in evaluat- 
ing performance degradation with various memory sys- 
t.em designs, but t,hat is beyond the scope of this 
paper. 

The simulator models a branch ta.rget instruction 
buffer (4 lines, 16 words per line) and a 16 word pre- 
fetch buffer in the Prefetch Unit. The Trail Unit con- 
tains an 8 word trail buffer and each Unification Unit 
cont.ains a.n 8 word prefetch buffer to hold elements of 
lists and structure unifications from the code space. 
They have been included in the simulator so that the 
performance measurements are not degraded by fac- 
tors that can easily be eliminated by small and simple 
buffers that are common in modern tzSI processors. 
At the same time, the simulation models the perfor- 
mance degradation that can be expected due to misses 
in buffers. Since our simulations are run with cold 
starts (the buffers a.re initially empty), the perfor- 
mance of a program with a short execution time is 
usually degraded more than that of a longer program. 

We present measurements on four benchmarks 
that have commonly been used in compa.ring the per- 
formirnce of Prolog systems. C~otzcat is a small pro- 
gram that concatenates a list of 3 elements to a list of 
6 elements. Na?~oi computes the solution to the 
“towers of Hanoi” puzzle for 8 disks , nrevl reverses a 
list of 30 elements, and qsd sorts a. list of SO integers 
using the quicksort algorithm. 

4.2. Effect of Multiple Unification Units 

In figure 4.1 we plot PLUM’s performance (rela- 

tive to the performance of PLUM with 1 Unification 
Unit and 1 cycle memory access) for each benchmark, 
and figure 4.2 is a similar graph for the average of all 
the benchmarks. Performance is measured as the 
reciprocal of the number of execution cycles, and the 
number of cycles for the average is the sum of the 
cycles for each benchmark. Figures 4.1 and 4.2 show 
that PLUM’s performance improves with additional 
Unification Units, but the performance improvement is 
small beyond three Unification Units for the 
benchmark programs chosen. Programs with more 
unifica.tion parallelism can be expected to benefit more 
from multiple Unification Units. Such programs usu- 
ally have a large number of complex argument 
unificat,ions in each goal. 

4.3. Effect of Memory Access Time 

Figure 4.3 shows how PLUM’s performance (rela- 
tive to the performance of PLUM with 1 Unification 
IJnit and 1 cycle memory access time) on each bench- 
mark is affected by memory access time. In these 
measurements we assume that the memory access time 
on all memory ports is the same. Figure 4.4 shows the 
effect on the average performance. The figures show 
that PLUM’s performance degrades slowly with 
increasing memory access time. This suggests that a 
PLUM implementation will perform quite well even if 
t,he memory system’s effective memory access time is 
more than 1 cycle (for example, due to cache misses 
and synchronization for shared data). 

The hanoi benchmark behaves differently from 
the other benchmarks. Unlike the other benchmarks, 
unification is not the bottleneck to hanoi’s perfor- 
mance, and none of the Unification Unit instructions 
in the benchmark access memory. As memory access 
time increases, therefore, the performance is deter- 
mined almost completely by the Choicepoint, Environ- 
ment and Prefetch Units, and the curves for various 
numbers of Unification Units merge. 

4.4. Comparison with the Berkeley VLSI-PLM 

Table 4.1 compares the performance of the VLSI- 
PLM (using a simulator that assumes a 1 cycle 
memory access and 1OOnsec clock cycle) with that of 
PLUM (using a simulator with 3 Unification Units, 1 
cycle memory access and 1OOnsec clock cycle). On 
some benchmarks, PLUM’s speedup over the VLSI- 
PLM cannot be attributed only to fine grain parallel- 
ism. The VLSI-PLM has little support for arithmetic 
operations and comparisons. For example, the VLSI- 
PLM’s performance on the hanoi benchmark can be 
improved by approximately 0.7 millisec (13.4 percent) 
by an improved instruction set for arithmetic. Table 
4.1 shows that PLUM achieves a speedup of 3.42 over 
the VLSI-PLM averaged over the benchmarks chosen. 

Table -l.i. Comparison of VLSI-PLM and PLUM 

lk,nchmark I VLSI-PLM I mw 
1 Execut.ion Time (millisec) 

(1”. 4 1 4.304 j 1.28 1 3.3G average 1 11.67 1 3.41-4 ( 3.12 J 
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Although we feel that execution times are more 
a.ppropriate measures of Prolog processor performance, 
it has unfortunately become customary to report the 
LIPS (Logical Inferences Per Second) that a processor 
can achieve. Table 4.2 lists the KLIPS (Kilo LIPS) 

that, PLUM with 3 Unification Units achieves on the 
benchmark set using different clock cycle lengths and 
memory access times. With current CMOS technology 
and memory speeds, an implementation of PLUM with 
50 nsec clock cycle and 1 cycle memory access is feasi- 
ble. With these assumptions, PLUM achieves 1102 
KLIPS. 
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Table 4.2. KLIPS Rates for PLUM (with 3 Unil. Units) 

Clock Cycle I 1OOnsec I 50nsec 1 
Mem. Access (cycles) 1 2 1 1 j 2 

Benchmark I I 

5. Summary and Conclusions 

We have described the architecture and imple- 
mentation of PLUM, a high performance processor for 
Prolog that exploits fine grain parallelism by executing 
instructions in parallel on multiple specialized function 
units, each of which can be implemented on a single 
VLSI chip. PLUM achieves a speedup of approxi- 
mately 3.4 over the Berkeley VLSI-PLM averaged over 
a set of benchmarks. Performance of PLUM improves 
with additional Unification Units but the performance 
improvement is small beyond three Unification Units 
for the benchmarks chosen. The amount of parallel- 
ism that can be exploited by multiple Unification Units 
varies from program to program. However, even pro- 
grams without sufficient unification parallelism per- 
form well because of parallel execution of choicepoint 
and environment instructions. PLUM’s performance 
degrades slowly with increasing memory access time, 
indicating that it will perform well with a wide range 
of memory systems. 

We are currently optimizing the microcode for 
each function unit and running simulations on a larger 
and more diverse benchmark set. We are confident 
that simulations on the larger benchmarks will result 
in comparable or greater speedup than that observed 
in this paper. 
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