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Abstract 

Simulations of scientific programs running on 
traditional scientific computer architectures show that 
execution with hundreds of registers can be more than 
twice as fast as ezecution with only eight registers. In 
addition, execution with a small number of fast regis- 
ters and hundreds of elower registers can be as fast as 
execution with hundreds of fast registers. A hierarchi- 
cal organization of fast and slow registers is presented, 
register-allocation strategies are discussed, and a novel, 
indirect, register-addressing mechanism is described. 

1. Introduction 

Early scalar, scientific computers had relatively few 
registers for temporary results. For example, the CDC 
7600 [II had only eight floating-point registers. More 
recent scientific computers have tended to have many 
more registers. The ETA-10 [6,7] has 256 general- 
purpose registers, the HEP-1 [5] had several thousand 
general-purpose registers, and the Gray-l and its descen- 
dants [2-41 have 512 vector-register elements in addition 
to several scalar registers. One is compelled to ask if the 
availability of these large register sets improves perfor- 
mance, or whether they have been included simply to 
provide programming convenience? 

It is well known that the access time for a large 
register set is greater than the access time for a smaller 
register set. Kuck [8) showed, for example, that worst- 
case fan-in grows as log(k), where k is the number of 
data elements multiplexed. Under what circumstances 
then do the large sets of registers, with their longer access 
times, enhance performance? 
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This paper attempts to d.eal with these two ques- 
tions. Execution speed of a set of programs is simulated 
with varying numbers of registers, varying ispeeds of 
registers, and varying degrees of parallel executi.on. Ana- 
lyses of these simulations reveal the register requirements 
for fast execution of various kinds of programs. A 
hierarchical register organization that provides the neces- 
sary register characteristics is then presented. 

In section 2 the set of programs and the simulator 
are described, the analyses of the simulation results are 
presented, and the registers requirements are discussed. 
In section 3 the hierarchical register organization is 
presented. In section 4 several issues, including the issues 
of register allocation and addressing are discussed. In sec- 
tion 5 we offer a few concluding remarks. 

2. Execution Simulation 

2.1. Simulated Code 

Livermore Kernels l-14 (S] are chosen as program 
fragments representative of scientific programs. Although 
they do not represent all important scientific programs, 
they are attractive because of their conciseness and 
widespread availability. The 1884 versions of the kernels 
that are used for the simulations are listed in Appendix 
A. 

Programs that are simulated are specified by their 
dependency graphs. This eliminates anomalies introduced 
by specific programming languages and by specific compi- 
lations for specific machines. Each node in a dependency 
graph represents a single operation such as a multiply, a 
subtract, or a memory store, and a directed edge between 
two nodes represents a result produced by one node and 
consumed by the other. Programs are translated to 
dependency graphs by hand, with no exotic parallelizing 
techniques, such as factoring of expressions, performed on 
programs or dependency graphs. 

2.2. Simulator Description 

All simulations assume a load-store architecture with 
multiple, overlapped, pipelined functional units and inter- 
leaved memory. Operation-execution times and, hence, 
pipeline lengths are taken from the Cray-IS [2]; for exam- 
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ple, logical operations execute in one clock tick, floating- 
point’multiplies execute in seven ticks, and memory loads 
execute in eleven ticks (results of simulations using other 
reasonable operation-execution times would not differ 
substantially from the simulation results reported below). 
Each operation’s execution time is the sum of operand 
read time, pipeline latency, and result write time. For 
architectures with few registers the sum of the register- 
operand read time and the register-result write time is 
assumed to be less than one clock tick. 

The time required to load and decode an instruction 
is not included in the execution time of the corresponding 
operation(s), because for scientil?c programs it, can usually 
be overlapped with the execution of other operations. 
When it can not be overlapped (for example, following a 
conditional branch) the instruction overhead is included 
in the branch latency. 

The time required to check hardware and result 
reservations is ignored in this paper, because for the pro- 
grams simulated, all reservation checking can be per- 
formed at compile time. However, this is not true in gen- 
eral, and we are currently investigating this issue. 

Parameters of the simulator that are varied are the 
number of registers available for temporary results, the 
speeds of the registers, and the number of operations that 
can start each tick. The number of registers available 
ranges from four to an unlimited number. An operation 
with no result register must either wait for one before it 
starts, or it must spill its result to main memory, increas- 
ing its execution time. An operation using a spilled result 
must first load it from memory, adding a memory load 
time to its execution time. Fast registers can be read or 
written in less than one tick, so that a logical operation 
can execute in one tick. Slow registers can be written in 
one clock tick, and can be read in either two, three, or 
five ticks; the use of slow registers increases an 
operation’s execution time. A maximum of either pne, 
two, four, or eight operations can start each clock tick; a 
start-limit of one represents traditional, scalar execution, 
while a start-limit of four represents either the overlapped 
execution of four vector instructions or the execution of 
complex instructions specifying four operations each. 

The simulator maintains a dependency graph, a 
ready list of operations with all of their operands avail- 
able, an active list of operations being executed, and 
counts of available registers. Initially the ready list con- 
tains operations that depend on no other operations, the 
active list is empty, and the register counts are the max- 
imum number of available registers of each speed. 

(1) 

(2) 

Each tick the following events occur: 

The remaining execution time of each operation in 
the active list is decremented, and each operation 
with no remaining time is removed from the active 
list and its result is made available to any operation 
that uses it. 

Any operations in the dependency graph that now 
have all their operands available are added to the 
ready list. 

(3) Up to start-limit operations are moved ‘from the 
ready list to the active list, result, registers are all* 
cated to them (if their results do not spill to 
memory), and the count of available registers is 
decreased. When an unlimited number of registers is 
available, operations in critical path (the set of long- 
est paths in the directed, acyclic dependency graph) 
are selected from the ready list before operations 
that not in the critical path, but no attempts are 
made to schedule more cleverly. Nevertheless, exe- 
cution times are usually less than 3% longer than 
optimal, and are never more than 20% longer than 
optival [IO]. Therefore, better schedulers are 
unlikely to significantly change the results of these 
simulations. When available registers are limited, 
operations that produce results to be used sdoner are 
selected before operations that produce results to be 
used later. This heuristic conserves register usage, 
but sometimes results in longer execution times than 
the other heuristic. When both fast and slower regis- 
ters are available, operations in the critical path are 
allocated fast registers if doing so could speed up 
executjon. 

(4) If an operation added to the active list is the last to 
read a previous operation’s result, that result’s regis- 
ter is freed and the available-register count is incre- 
mented. 

The number of clock ticks from the time the first 
operation is added to the active list until the last opera- 
tion is removed from the active list, is the total execution 
time. 

2.3. Dependence of Performance on Number of 
Registers 

Figures la-h show curves for the ratios of simulated 
execution times with n registers to the execution time 
with an unlimited number of registers, for Livermore Ker- 
nels 1-14, for n equal to 4, 8, 16, 32, 64, 128, 256, 512, 
1024, and 2048, and for start-limits of one, two, four, and 
eight. The results do not vary significantly when the 
register-allocation heuristics are varied. 

Tu.m/Tuasm 
4.a 

3.5 

3.0 

- start-limit = 1 
-s-s start-limit - 2 
. . start-limit = 4 

- startlimit = 8 

4 8 16 32 64 128 
Registers 

256 512 1024 2048 

Figure la: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 1. 
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Figure lb: Ratio of Execution Time with Limited Figure lf: Ratio of Execution Time with Limited 
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gisters, for Livermore Kernel 3. gisters, for Livermore Kernel 6. 
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Figure lc: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 3. 
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Figure lh: Ratio of Execution Time with Limited 

gisters, for Livermore Kernel 4. 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 8. 
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Figure le: Ratio of Execution Time with Limited Figure li: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 6. gisters, for Livermore Kernel 9. 
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Figure lg: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 7. 
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Figure 11: Ratio of Execution Time with Limited Figure In: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 10. gisters, for Livermore Kernel 14. 
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Figure lk: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 11. 
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Figure 11: Ratio of Execution Time with Limited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 12. 
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Figure lm: Ratio of Execution Time with Llmited 
Registers to Execution Time with Unlimited Re- 
gisters, for Livermore Kernel 13. 
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The very-serial kernels 5, 6, and 11 run as fast with 
four registers as they do with an unlimited number of 
registers. The narrow critical-path widths of these ker- 
nels ensure that few operations are executing con- 
currently, and that most results are used immediately 
after they are generated. 

The moderately-serial kernel 13 requires approxi- 
mately sixteen registers to run at close to its ultimate 
speed, but the execution speed with the register- 
conserving schedule never reaches the speed of the kernel 
with an execution-time-conserving schedule that happens 
to require more registers. 

The moderately-serial kernel 14 requires approxi- 
mately 128 registers to reach its ultimate speed for a 
start-limit of one, but this is 30% slower than the execu- 
tion speed of the kernel with a minimal-execution-time 
schedule. Kernels 13 and 14 both have narrow critical 
paths, but they also have many operations that can exe- 
cute concurrently. Schedules that do not attempt to con- 
serve registers allow the non-critical-path operations to 
start long before their results are needed. This ties up 
registers until the results are used, but it also ensure that 
most of the critical-path operations run without interfer- 
ence from non-critical-path operations. 

The parallel kernels require between eight and 256 
registers in order to run at their ultimate speeds, depend- 
ing on the start-limits. With only eight registers, most of 
the parallel kernels run 2-2.5 times longer than with an 
unlimited number of registers. Most of the parallel ker- 
nels have wide critical paths, and their execution times 
are often limited by the time required to start all the 
operations. Thus, many operations are executing at a 
time, and each operation is allocated a result register. 
Also, operations do not always start as soon as data 
dependencies allow because of the limited start- 
bandwidth, and result registers cannot be freed until the 
operations that use the results start. 

The fact that programs scheduled to use few regis- 
ters run slower than programs scheduled without regard 
to register usage is a motivation for machines with many 
registers. If the machine has a sufficient number of regis- 
ters, scheduling time can be spent increasing execution 
speed, rather than minimizing register usage. 
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It should be noted that the Cray-1 has a total of 512 
vector register elements; therefore much vectorizable code 
could potentially execute as fast as it could with an 
unlimited number of registers. However, unvectorized 
loops like kernel 14 could not make effective use of the 
vector registers, and therefore, more registers or a more 
general register structure than the Cray-1 has are needed 
for the fastest execution of Livermore Kernels I-14. 

When the number of registers is restricted to four, 
execution times of most kernels are increased by a factor 
of 1.5 to 3. The execution times of the kernels would be 
even greater with fewer registers, suggesting that pure, 
memory-to-memory, scalar architectures are terribly 
inefficient, at least for programs with characteristics simi- 
lar to Livermore Kernels l-14. 

2.4. Fast-Register Requirements . 

During serial sections of programs, when few opera- 
tions are ready to execute, the operation-execution times 
dominate the total execution time, so register access 
should be as fast as possible. During parallel sections of 
programs, however, longer register access times can be 
tolerated by overlapping the execution of more opera- 
tions. 

The maximum number of fast registers reserved at a 
time is tracked for execution with start-limits of one, two, 
four, and eight, for all 14 kernels. A count of the number 
of times fast registers are reserved is also maintained, as 
an indication of the importance of fast registers to fast 
execution of the program. For example, if fast registers 
are allocated 2000 times even though only two fast regis- 
ters are required, the fast registers speed up at least 2000 
critical-path operations, and, thus, have a significant 
effect on performance. If fast registers are allocated only 
ten times, they only speed up the computation rarely, and 
they have a negligible effect on performance. 

These data are shown for registers with two-tick 
reads and one-tick writes in table 1. 

Kernels 5, 6, 11, 13, and 14, with very narrow criti- 
cal paths, can make use of no more than one or two fast 
registers, although they use them for the result of almost 
every critical-path operation. One or two fast registers 
speed up the execution of these kernels significantly. 

Kernels 3 and 4 rarely use fast registers, and kernel 
12 never uses a fast register, Kernels 3 and 4 essentially 
execute summation trees, and virtually all operations are 
in the critical path, so there can be a shortage of critical- 
path operations only at the bottom of their summation 
trees. Every operation in kernel 12 is in the critical path, 
which is many times wider than the largest start-limit of 
eight. Kernels 3, 4, and 12 do not need fast registers for 
fast execution. 

Kernel 2 can use as many as 40 or more fast registers 
if its loop is executed enough times and if start-limit is 
large enough. The reason for this behavior is that kernel 
2 computes the inner products of sub-vectors of length 
five, and the unbalanced summation tree causes some 

Table 1: Number of Fast Registers Required and 
Number of Times Fast Registers Used (Slow- 
Register Read-Time = 2, Slow-Register Write- 
Time = 1). 

l- 

Kernel 
1 1 2 
2 1 1 
3 3 9 
4 4 11 
5 1 1993 
0 1 1995 
7 1 2 
8 1 2 
9 1 1 

10 1 8 
11 1 1000 
12 0 0 
13 .2 364 
14 2 606 

Number Parallel Starts 

2 2 
3 9 
3 1 1. 
1 lQQi! 
1 1994 
2 3 
2 3 
2 2 
2 16 
1 999 
0 0 
2 391 
2 600 

4 5 
4 4 
3 9 
3 11 
1 1992 
1 1994 
4 5 
4 5 
4 4 
4 32 
1 999 
0 0 
2 391 
2 607 

1 

40 88 
3 9 
3 11 
1 1992 
1 1894 
8 8 
8 8 
8 8 
8 64 
1 998 
0 0 
2 391 
2 607 

results to wait longer before they are used. Better 
scheduling of the operations :in this kernel would elim- 
inate the anomalous behavior. 

These results summarized in table 1 show that only a 
few fast registers can be effectively used for temporary- 
result storage. 

The ratios of execution times of all kernels with 
mostly slow registers to the execution times with all fast 
registers are shown in table 2. The number of fast regis- 
ters are the same as the maximum required in table 1, the 
slow-register read time is two ticks, and the slow-register 

Table 2: Ratios of Times for Simulated Execution 
with Few Fast Registers and Unlimited Slow Re- 
gisters to Times with Unlimited Fast Registers, 
for a-Tick Slow Read, l-Tick Slow Write. 

F 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 - 

Number Parallel Starts 
1 

1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1 .oo 
1 .oo 
1.00 

2 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1.00 
1.00 

4 
1.00 
1.00 
1.00 
1.01 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

8 
1.00 
1.02 
1.01 
1.03 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
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write time is one tick. Almost without exception, the 
programs run no slower with mostly slow registers than 
with all fast registers. In the worst case, kernel 4 with a 
start-limit of eight requires 3% more time to execute with 
mostiy slow registers than with all fast registers. 

The results of simulations when the slow read time is 
increased to three ticks are summarized in table 3. There 
is a worst case degradation of 5% for kernel 4 and a 
worst case degradation of 12% for kernel 14. For most of 
the kernels most of the time, however, the execution 
times and fast register usages are the same as when the 
slow read time is two ticks. 

Table 5: Ratios of Times for Simulated Execution 
with Few Fast Registers and Unlimited Slow Re- 
gisters to Times with Unlimited Fast Registers, 
for Slow-Register Read-Time = 3, Slow-RegSster 
Write-Time 3 1. 

- 

i- 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 - 

Number Parallel Starts 
I 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.04 

1.00 
1.00 
1.00 
1.01 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.12 

4 
1.00 
1.01 
1.01 
1.02 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.12 

8 
1.00 
1.03 
1.02 
1.05 
1.00 
1.00 
1.01 
1.01 
1.01 
1.01 
1.00 
1.01 
1.00 
1.12 

If the slow-register read time is increased to five 
ticks, the execution times are as much as 20% greater 
than execution times for all fast registers, so five-tick slow 
registers are not nearly se useful as faster registers. 

These results suggest that three different register 
speeds could be useful: a small set of less-than-one-tick 
registers for the most critical operations, a larger set of 
two-tick registers for moderately critical operations, and 
an even larger set of three-tick registers for the non- 
critical operations. 

The results summarized in figures la-ln and in 
tables l-3 suggest that a small set of high speed registers 
supplementing a large set of slower registers provide the 
same performance as an unlimited set of high speed regis- 
ters. This performance is about a factor of two faster 
than if only eight registers are provided. 

3. A Hierarchical, General-Purpose Register 
Organization 

Consider the design of a set of 1024 general-purpose 
registers, a subset of which can be accessed in less than 
one clock tick. Note that accessing one of many registers 
requires more time than accessing one of a few registers, 
because the many registers require more levels of logic to 
multiplex than do the few registers, and, therefore, 
increasing the number of registers increases the worst- 
case access time. 

The organization of one bit of a hierarchical set of 
registers is shown in figure 2. This register set can sup- 
port up to two register reads and one register write each 
clock tick. At the left of figure 2 are 960 registers, organ- 
ized as 30 sets of 32 registers each. A collection of 30 
pairs of 32:l multiplexers select the contents of any two 
registers. The multiplexer outputs are held in 30 pairs of 
latches controlled by the system clock. In the middle of 
the figure, 59 additional registers and the 30 pairs of 
latches feed a pair of 89:l multiplexers, the outputs of 
which are held in a pair of latches controlled by the sys- 
tem clock. At the right of figure 2, five additional regis- 
ters plus the pair of latches plus f other functional unit 
outputs are selected by a pair of (?+f):l multiplexers. 
The outputs of these last two multiplexers feed a logical 
functional unit that performs operations like AND, OR, 
exclusive-OR, etc. The logical functional unit output 
feeds back to the five close registers, and is also held in a 
latch controlled by the system clock. The output of this 
latch is fanned out to the 59 middle registers and to the 
960 distant registers. In addition, a pair of 7:l multi- 
plexers can send the contents of any of the registers to 
the other functional units in the CPU. 

Figure 2: Organization of a One-Bit Slice of a 
Hierarchical Register Set. 
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Distant registers can be read and sent to the logical 
functional unit in two clock ticks, middle registers can be 
read and sent to the logical functional unit in one clock 
tick, and close registers can be read and sent to the logi- 
cal functional unit in less than one clock tick. Read 
addresses reach the distant multiplexers directly from the 
operation start hardware, they reach the middle multi- 
plexers after a one-tick delay, and they reach the close 
multiplexers after a twptick delay. 

The output of the logical functional unit can be writ 
ten to any close register in the same clock tick and to the 
middle and distant registers in the next tick. Decoded 
write addresses reach the close registers at the same time 
that the read addresses reach the close multiplexers. 
Decoded write addresses reach the middle and distant 
registers one tick after read addresses reach the close 
multiplexers. 

In order to support a start-limit of eight, this 
hierarchical-register organization must be generalized to 
support up to 16 register-reads and eight register-writes 
each clock tick. This generalization and other implemen- 
tation details are discussed by Swensen [lo]. 

4. Discussion 

4.1. Hierarchical-Register Allocation 

Close, middle, and distant registers should be allo- 
cated such that close registers are used for the most 
time-critical temporary results, middle registers are used 
for less time-critical temporary results, and distant regis- 
ters are used for even less time-critical temporary results. 

As long as an operation is separated from its source 
operations by at least 

start-limit * (operation-time +write-time+ read-time) 

other operations, it can start without any wait. (Note 
that even if data forwarding is used, the result must be 
written into some latch, and the destination operation 
must select from some number of source latches and 
registers, so a write time and a read time must still be 
included in the inter-operation separation.) Operations 
are allocated distant result-registers, and are scheduled EO 
that they are separated from their source operations 
where possible. Based upon the studies summarized in 
section 2, with 512 or more distant registers there should 
always be enough distant registers for all temporary 
results. For pairs of operations which cannot be 
scheduled far enough apart, the available middle registers 
are allocated to the more time-critical temporary results, 
and the available fast registers are allocated to the most 
time-critical temporary results. 

The use of registers with different speeds undoubt- 
edly complicates the task of automatic register allocation. 
However, the use of a large number of registers simplifies 
some aspects of register allocation, because there should 
always be enough registers available for temporary 
results. Therefore, the net effect may be only a slight 
increase in compiler complexity. 

4.2. Addressing Many Registere 

With 1024 registers, three-address instructions 
require 30 bits to specify all three register operands expli- 
citly. Relative to a shorter instruction fonmat, more 
instruction-stream bandwidth and a larger instruction 
buffer are required to achieve the same instruction-issue 
performance. 

It is possible to address the 1024 registers by specify- 
ing one register operand explicitly using a ten-bit address, 
and by specifying the rema.ining register or registers 
indirectly, using fewer bits. Each time an instruction 
with a register destination issues, the ten-bit, register 
address is added to a queue of register addresses. Regis- 
ter source specifiers are three bits long and they select 
which of the last eight registers written is to be used M 
the operand. If both source registers are not among the 
last eight written, a 30-bit, long-format instruction is 
used. 

The sequence of written registers can be determined 
at compile time, so the correct specification can be deter- 
mined then, as well. In addition, each register destination 
can be determined before the instruction actually issues, 
so the queue can be updated enough in advance that 
instructions can issue without delays. With only eight 
queue elements, the addresses can be selected quickly. 
Furthermore, results tend to be used soon after they are 
written, as discussed by Swensen [lo], so very often the 
desired result is one of the last eight written. 

4.2. Other Issues 

Computers with many registers have long context- 
switch times. This ,is not a major disadvantage for 
scientific computers, however, because time-critical termi- 
nal and disk input and output operations are typically 
serviced by other computers dedicated to the tasks. In a 
time-sharing environment, the minimum running time 
quantum can be increased to the point where context- 
switch time is insignificant relative to running time. For 
procedure and function calls, most of the registers are not 
saved; the large number of registers allows different sub- 
sets of registers to be allocated to different procedures 
and functions. 

In order to read distant-register operands in time, 
instructions with operation specifications must reach the 
start hardware at least two ticks before operations are 
actually started. This increases the delay following a con- 
ditional branch before operations start again. This also 
forces any hardware reservation mechanisms to check the 
availability of registers as much as two ticks in the 
future, or longer if reservation checking takes more than 
one tick. With many close/distant registers there is, 
thus, a strong motivation to perform as much reservation 
checking as possible at compile time. 
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5. Conclusione 
Execution of parallel sections of scientific programs 

on an architecture with 256 or more registers can be more 
than twice aa fast as execution on a similar architecture 
with only eight registers. This is because the availability 
of many registers allow operations to be scheduled for 
maximum overlap of execution, rather than for minimum 
usage of registers. The greater the overlap of operation 
execution (either because of longer execution times or 
because more operations are started each tick), the more 
registers that are needed to hold the temporary results. 
The longer access times of large register sets does not 
significantly increase the execution time of parallel pro- 
grams because a register’s access can be overlapped with 
the execution of other operations. 

Execution of serial sections of scientific programs is 
not any faster with many registers than it is with a few 
registers, because the serial dependencies prevent most of 
the overap of operation execution. Longer register-access 
times degrade performance because the operand accesses 
can not be overlapped with the execution of other opera- 
tions. 

Fortunately, programs do not require many registers 
at the same time that they require fast registers, so it is 
possible to use a large set of registers, a few of which are 
fast, and most of which are slow. A hierarchical organi- 
zation of registers that provides direct access to a small 
set of registers and pipelined access to the remaining 
registers can support fast execution of both serial and 
parallel sections of scientific programs. Register alloca- 
tion, while more complex than for a uniform set of regis- 
ters, is straightforward. The instruction-stream 
bandwidth requirements for the large set of registers can 
be reduced by using limited, indirect addressing of the 
registers. 

For architectures that are oriented towards vector 
processing, vector registers probably provide the necea- 
sary temporary storage more efficiently than hierarchical, 
general-purpose registers. In fact, vector registers can 
even be generalized to support fast serial execution [lo). 
However, many parallel programs do not vectorize easily, 
so that an architecture with a large, hierarchical, 
general-purpose register set may support faster execution 
than a vector architecture. 
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APPENDIX A 

Livermore Kernel 1: Hydro Excerpt 
for k = 1 to 400 

z[k] = q+y[k]*(r*r[k+lo]+t*t[k+ll]) 

Livermore Kernel 2: MLR, Inner Product 
for k = 1 to 40*5 by 5 

tp[k] = r[k]*z[k]+z[k+l]*z[k+l]+r[k+2]*z[k+2] 
f z[k+3]*z[k+3]+z[k+4]*z[k+4] 

Livermore Kernel 3: Inner Product 
for k = 1 to 1024 

Q = q+z[k]*2[k] 

Livermore Kernel 4: Banded Linear Equations 
for 1 = 7 to 107 by 50 

for j = 1 to 128 
z[/-l] = z[l-l]-z[l+j-l]*y[j] 

Livermore Kernel 5: Tri-Diagonal Elimination, Below 
Diagonal 
for i = 2 to 997 

z[i] = z[aj*(y[i]-z[i-11) 

Livermore Kernel 6: Tri-Diagonal Elimination, Above 
Diagonal 
for i = 997-l downto 1 

44 = z[i]--z[i]*z[i+l] 

Livermore Kernei 7: Equation of State Excerpt 
for m = 1 to 120 

z[m] = u[m]+f*(z[m]+r*y[m]) 
+ t*(u[m+3]+t*(u[m+2]+r*u[m+l]) 
+ t*(u[m+6]+r*(u[m+5]+r*u[m+4]))) 

Livermore Kernel 8: PDE Integration 
for kx = 2 to 3 

for ky = 2 to 20 
dul[ky] = ul[kz,ky+l,nll]-ul[kz,ky-l,flll] 
du2[ky] = u2[kz,ky+l,nll]-utl[kz,ky-l,nll] 

du 3hl = u3[kz,ky+l,nll]-u3[kz,ky-l,nll] 
ul[kz,ky,nl2] = ul[kz,ky,nll] 

+ alltdul[ky]+a12*du2[ky]+a13*du3[ky] 
+ Sig*(U1[k~+l,ky,U~l]-2.*Ul[k~,ky,fl~l] 

+ul[kz-l,ky,nll]) 
u2[kz,ky,nl2] = u2[kz,ky,nll] 

+ a21*dul[ky]+a22*du2[ky]+a23rdu3[ky] 
+ sig*(u2[kz+l,ky,nll]-2.*u2[kz,ky,nll] 
+u2[kz-l,ky,nll]) 

u3[kz,ky,nl2] = u3[kz,ky,nll] 
+ a31*dul[ky]+a32*du2[ky]+a33*du3[ky] 
+ sig*(u3[kz+l,ky,nll]-2.*u3[kz,ky,nll] 
+u3[kz-l,ky,nll]) 

Livermore Kernel 9: Integrate Predictors 
for i = 1 to 100 

P41,il = bm28*pz[13,i]+bm27*pz[l2,i]+bm26*pz[ll,i] 
+ bm25*pz[lO,i]+bm24*pz[9,i]+bm23tpz[8,i] 
+ bm22*pz[7,i]+cO*(pz[5,i]+pz[6,i])+pz[3,i] 

Difference Predictors Livermore Kernel 10: 
for i = 1 to 100 

;: 
= cz[S,i] 
= ar -pz [S,i] 

psf5,i] = at 
cr = br -pz [S,i] 
pz[6,i] = br 

= cr -pz[7,i] 
iii ]7,i] = cr 
br = ar -pz [8,i] 
pz[8,i] = at 
cr = br -pz [Q,i] 
pz[Q,i] = br 
or = cr -pz [lO,i] 
pz[lO,i] = cr 
br = at -pz[ll,i] 
pz[ll,i] = ar 

cr = br -pl[12,i] 
pz[l&i] = br 
pz[l4,i] = cr -p2[13,i] 
pz[13,i] = cr 

Livermore Kernel 11: First Sum 
for k = 2 to 999 

44 = z[k-l]+y[k] 

Livermore Kernel 12: First Diff. 
for k = 1 to 1000 

Sk1 = YP+ll-dkl 

Livermore Kernel 13: 2-D Particle Pusher 
for ip = 1 to 128 

il = p[l,ip] 

= p[Vpl 
;;3,ip] = p[3,ip]+b[il,jl] 
PP,~Pl = p[4,ip]+c[il,jl] 
p [Gpl = p [l,+l +pP,+l 
PIVPI = p P,ipl +p P,iPl 
i2 = p[l,ip] 
i2 = PIVPI 
p[l,ip] = p[l,ip]+y[i2+32] 
p[2,ip] = p[2,ip]+r[j2+32] 
i2 = i2+e[i2+32] 
j2 = j2+f[j2+32] 
h [i2, j2] = h[i2,j2]+1.0 

Livermore Kernel 14: 1-D Particle Pusher 
for k = 1 to 150 

is = grd[k] 
xi = iz 
uz[k] = uz[k]+ez[iz]+(z:r[k]-zi)+dez[iz] 

=z PI = ..[k]+uz[k]+flz 
ir = zz[k] 
ri = it 
rxl = zz[k]-ri 
:r = ir AND 63 
zzjk] = ti+rzl 
rh [ir] = rh[ir]+l.O-rzl 
rh [ir+l] = rh[ir+l]+rzl 
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