
Hierarchical Registers for Scientific Computers

John A. Swensen

Yale N. Patt

University of California at Berkeley

Abstract

Simulations of scientific programs running on
traditional scientific computer architectures show that
execution with hundreds of registers can be more than
twice as fast as ezecution with only eight registers. In
addition, execution with a small number of fast regis-
ters and hundreds of elower registers can be as fast as
execution with hundreds of fast registers. A hierarchi-
cal organization of fast and slow registers is presented,
register-allocation strategies are discussed, and a novel,
indirect, register-addressing mechanism is described.

1. Introduction

Early scalar, scientific computers had relatively few
registers for temporary results. For example, the CDC
7600 [II had only eight floating-point registers. More
recent scientific computers have tended to have many
more registers. The ETA-10 [6,7] has 256 general-
purpose registers, the HEP-1 [5] had several thousand
general-purpose registers, and the Gray-l and its descen-
dants [2-41 have 512 vector-register elements in addition
to several scalar registers. One is compelled to ask if the
availability of these large register sets improves perfor-
mance, or whether they have been included simply to
provide programming convenience?

It is well known that the access time for a large
register set is greater than the access time for a smaller
register set. Kuck [8) showed, for example, that worst-
case fan-in grows as log(k), where k is the number of
data elements multiplexed. Under what circumstances
then do the large sets of registers, with their longer access
times, enhance performance?

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-89791-272-1/88/0007/0346 $1.50

This paper attempts to d.eal with these two ques-
tions. Execution speed of a set of programs is simulated
with varying numbers of registers, varying ispeeds of
registers, and varying degrees of parallel executi.on. Ana-
lyses of these simulations reveal the register requirements
for fast execution of various kinds of programs. A
hierarchical register organization that provides the neces-
sary register characteristics is then presented.

In section 2 the set of programs and the simulator
are described, the analyses of the simulation results are
presented, and the registers requirements are discussed.
In section 3 the hierarchical register organization is
presented. In section 4 several issues, including the issues
of register allocation and addressing are discussed. In sec-
tion 5 we offer a few concluding remarks.

2. Execution Simulation

2.1. Simulated Code

Livermore Kernels l-14 (S] are chosen as program
fragments representative of scientific programs. Although
they do not represent all important scientific programs,
they are attractive because of their conciseness and
widespread availability. The 1884 versions of the kernels
that are used for the simulations are listed in Appendix
A.

Programs that are simulated are specified by their
dependency graphs. This eliminates anomalies introduced
by specific programming languages and by specific compi-
lations for specific machines. Each node in a dependency
graph represents a single operation such as a multiply, a
subtract, or a memory store, and a directed edge between
two nodes represents a result produced by one node and
consumed by the other. Programs are translated to
dependency graphs by hand, with no exotic parallelizing
techniques, such as factoring of expressions, performed on
programs or dependency graphs.

2.2. Simulator Description

All simulations assume a load-store architecture with
multiple, overlapped, pipelined functional units and inter-
leaved memory. Operation-execution times and, hence,
pipeline lengths are taken from the Cray-IS [2]; for exam-

346

ple, logical operations execute in one clock tick, floating-
point’multiplies execute in seven ticks, and memory loads
execute in eleven ticks (results of simulations using other
reasonable operation-execution times would not differ
substantially from the simulation results reported below).
Each operation’s execution time is the sum of operand
read time, pipeline latency, and result write time. For
architectures with few registers the sum of the register-
operand read time and the register-result write time is
assumed to be less than one clock tick.

The time required to load and decode an instruction
is not included in the execution time of the corresponding
operation(s), because for scientil?c programs it, can usually
be overlapped with the execution of other operations.
When it can not be overlapped (for example, following a
conditional branch) the instruction overhead is included
in the branch latency.

The time required to check hardware and result
reservations is ignored in this paper, because for the pro-
grams simulated, all reservation checking can be per-
formed at compile time. However, this is not true in gen-
eral, and we are currently investigating this issue.

Parameters of the simulator that are varied are the
number of registers available for temporary results, the
speeds of the registers, and the number of operations that
can start each tick. The number of registers available
ranges from four to an unlimited number. An operation
with no result register must either wait for one before it
starts, or it must spill its result to main memory, increas-
ing its execution time. An operation using a spilled result
must first load it from memory, adding a memory load
time to its execution time. Fast registers can be read or
written in less than one tick, so that a logical operation
can execute in one tick. Slow registers can be written in
one clock tick, and can be read in either two, three, or
five ticks; the use of slow registers increases an
operation’s execution time. A maximum of either pne,
two, four, or eight operations can start each clock tick; a
start-limit of one represents traditional, scalar execution,
while a start-limit of four represents either the overlapped
execution of four vector instructions or the execution of
complex instructions specifying four operations each.

The simulator maintains a dependency graph, a
ready list of operations with all of their operands avail-
able, an active list of operations being executed, and
counts of available registers. Initially the ready list con-
tains operations that depend on no other operations, the
active list is empty, and the register counts are the max-
imum number of available registers of each speed.

(1)

(2)

Each tick the following events occur:

The remaining execution time of each operation in
the active list is decremented, and each operation
with no remaining time is removed from the active
list and its result is made available to any operation
that uses it.

Any operations in the dependency graph that now
have all their operands available are added to the
ready list.

(3) Up to start-limit operations are moved ‘from the
ready list to the active list, result, registers are all*
cated to them (if their results do not spill to
memory), and the count of available registers is
decreased. When an unlimited number of registers is
available, operations in critical path (the set of long-
est paths in the directed, acyclic dependency graph)
are selected from the ready list before operations
that not in the critical path, but no attempts are
made to schedule more cleverly. Nevertheless, exe-
cution times are usually less than 3% longer than
optimal, and are never more than 20% longer than
optival [IO]. Therefore, better schedulers are
unlikely to significantly change the results of these
simulations. When available registers are limited,
operations that produce results to be used sdoner are
selected before operations that produce results to be
used later. This heuristic conserves register usage,
but sometimes results in longer execution times than
the other heuristic. When both fast and slower regis-
ters are available, operations in the critical path are
allocated fast registers if doing so could speed up
executjon.

(4) If an operation added to the active list is the last to
read a previous operation’s result, that result’s regis-
ter is freed and the available-register count is incre-
mented.

The number of clock ticks from the time the first
operation is added to the active list until the last opera-
tion is removed from the active list, is the total execution
time.

2.3. Dependence of Performance on Number of
Registers

Figures la-h show curves for the ratios of simulated
execution times with n registers to the execution time
with an unlimited number of registers, for Livermore Ker-
nels 1-14, for n equal to 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048, and for start-limits of one, two, four, and
eight. The results do not vary significantly when the
register-allocation heuristics are varied.

Tu.m/Tuasm
4.a

3.5

3.0

- start-limit = 1
-s-s start-limit - 2
. . start-limit = 4

- startlimit = 8

4 8 16 32 64 128
Registers

256 512 1024 2048

Figure la: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 1.

347

TdTuara
4.0
3.5

- startlimit = 1
---- startlimit = 2

start-limit = 4
startlimit = 8

TunJTmnm
4.
3.

3.
2.
2.
1.

-- startdimit = 1
--em starblimit = 2
. . startdimit = 4

-- start.limit = 8

4 8 16 32 64 128 256 512 1024 2048
Registers

~--F-s-Y-’
4 16 32 64 X28 256 512 1024: 2048

Registers

Figure lb: Ratio of Execution Time with Limited Figure lf: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re- Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 3. gisters, for Livermore Kernel 6.

Tnm/Twn
4.
3. i..
3.
2.
2.
1.

- startlimit = 1
---- startlimit = 2

. . . startlimit = 4
- start-limit = 8

I 4
4 8 16 32 64 128 256 512 1024

Registers
2048

Figure lc: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 3.

Tiim/T,mam
4.
3.
3.
2.
2.

- startlimit = 1
---- startlimit = 2
. . . .: . . . start-limit = 4
- startlimit = 8

4 8 16 32 64 128 256 512 1024 2048
Registers

Figure Id: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-

Figure lh: Ratio of Execution Time with Limited

gisters, for Livermore Kernel 4.
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 8.

TamPmum
4.0
3.5
3.0

2.5
2.0
1.5
1.0

- start-limit = 1
--se startlimit = 2
. startlimit = 4

- start-limit = 8

t
4 8 16

,
32 64 128 256 512

Registers
1024 2048

Figure le: Ratio of Execution Time with Limited Figure li: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re- Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 6. gisters, for Livermore Kernel 9.

Tnm/Tumum
-- startlimit - 1

--em start-limit 3 2
. start-limit = 4

-- start-limit 3 8

iv
w . 4

16 32 64 128 256 512 1024 2048
Registers

Figure lg: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 7.

TdTwtrn -- start-limit = 1
---._ startlimit = 2
. I start-limit = 4

t
4 8 16 32 64 128 256 512 1024 2048

Registers

TdTunnm
4.
3. 3
3.

-_ start-limit = 1
--sew startlimit = 2
. . . start-limit = 4

i;w- start limit = l
I .
4 8 16 32 64 128 256 512 1024 2048

Registers

348

Ts&‘mum 4. 3
3.
3.

- startlimit = 1

---- starblimit = 2
. start-limit = 4

I 4
4 8 16 32 64 128

Registers
256 512 1024 2048

I 4
4 8 16 32 64 128 256 512 1024 2048

Registers

Figure 11: Ratio of Execution Time with Limited Figure In: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re- Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 10. gisters, for Livermore Kernel 14.

Tnm/Tunsm
a.

3.
3. I

2.
2.

- start-limit = 1

---- start-limit = 2

. . . start-limit = 4

- start-limit = 8

I
4 8 16 32 64 128 256 512 1024 2048

Registers

Figure lk: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 11.

TtdTunsm
4.
3. 3
3.

- start-limit = 1

--mm start-limit = 2
. . . start-limit = 4

I 4
4 8 16 32 64 128 256

Registers
512 1024 2048

Figure 11: Ratio of Execution Time with Limited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 12.

TdTunm
4.

2. I

3.
3.

2.

- start-limit = 1
--ss start-limit = 2
. start-limit = 4
- start-limit = 8

I .
4 8 16 32 64 128 256 512

Registers
1024 2048

Figure lm: Ratio of Execution Time with Llmited
Registers to Execution Time with Unlimited Re-
gisters, for Livermore Kernel 13.

Tsm,/Tunnm
4.
3.
3.
2.
2.

- start-limit = 1

---- start-limit = 2
. start-limit = 4

- start-limit = 8

The very-serial kernels 5, 6, and 11 run as fast with
four registers as they do with an unlimited number of
registers. The narrow critical-path widths of these ker-
nels ensure that few operations are executing con-
currently, and that most results are used immediately
after they are generated.

The moderately-serial kernel 13 requires approxi-
mately sixteen registers to run at close to its ultimate
speed, but the execution speed with the register-
conserving schedule never reaches the speed of the kernel
with an execution-time-conserving schedule that happens
to require more registers.

The moderately-serial kernel 14 requires approxi-
mately 128 registers to reach its ultimate speed for a
start-limit of one, but this is 30% slower than the execu-
tion speed of the kernel with a minimal-execution-time
schedule. Kernels 13 and 14 both have narrow critical
paths, but they also have many operations that can exe-
cute concurrently. Schedules that do not attempt to con-
serve registers allow the non-critical-path operations to
start long before their results are needed. This ties up
registers until the results are used, but it also ensure that
most of the critical-path operations run without interfer-
ence from non-critical-path operations.

The parallel kernels require between eight and 256
registers in order to run at their ultimate speeds, depend-
ing on the start-limits. With only eight registers, most of
the parallel kernels run 2-2.5 times longer than with an
unlimited number of registers. Most of the parallel ker-
nels have wide critical paths, and their execution times
are often limited by the time required to start all the
operations. Thus, many operations are executing at a
time, and each operation is allocated a result register.
Also, operations do not always start as soon as data
dependencies allow because of the limited start-
bandwidth, and result registers cannot be freed until the
operations that use the results start.

The fact that programs scheduled to use few regis-
ters run slower than programs scheduled without regard
to register usage is a motivation for machines with many
registers. If the machine has a sufficient number of regis-
ters, scheduling time can be spent increasing execution
speed, rather than minimizing register usage.

349

It should be noted that the Cray-1 has a total of 512
vector register elements; therefore much vectorizable code
could potentially execute as fast as it could with an
unlimited number of registers. However, unvectorized
loops like kernel 14 could not make effective use of the
vector registers, and therefore, more registers or a more
general register structure than the Cray-1 has are needed
for the fastest execution of Livermore Kernels I-14.

When the number of registers is restricted to four,
execution times of most kernels are increased by a factor
of 1.5 to 3. The execution times of the kernels would be
even greater with fewer registers, suggesting that pure,
memory-to-memory, scalar architectures are terribly
inefficient, at least for programs with characteristics simi-
lar to Livermore Kernels l-14.

2.4. Fast-Register Requirements .

During serial sections of programs, when few opera-
tions are ready to execute, the operation-execution times
dominate the total execution time, so register access
should be as fast as possible. During parallel sections of
programs, however, longer register access times can be
tolerated by overlapping the execution of more opera-
tions.

The maximum number of fast registers reserved at a
time is tracked for execution with start-limits of one, two,
four, and eight, for all 14 kernels. A count of the number
of times fast registers are reserved is also maintained, as
an indication of the importance of fast registers to fast
execution of the program. For example, if fast registers
are allocated 2000 times even though only two fast regis-
ters are required, the fast registers speed up at least 2000
critical-path operations, and, thus, have a significant
effect on performance. If fast registers are allocated only
ten times, they only speed up the computation rarely, and
they have a negligible effect on performance.

These data are shown for registers with two-tick
reads and one-tick writes in table 1.

Kernels 5, 6, 11, 13, and 14, with very narrow criti-
cal paths, can make use of no more than one or two fast
registers, although they use them for the result of almost
every critical-path operation. One or two fast registers
speed up the execution of these kernels significantly.

Kernels 3 and 4 rarely use fast registers, and kernel
12 never uses a fast register, Kernels 3 and 4 essentially
execute summation trees, and virtually all operations are
in the critical path, so there can be a shortage of critical-
path operations only at the bottom of their summation
trees. Every operation in kernel 12 is in the critical path,
which is many times wider than the largest start-limit of
eight. Kernels 3, 4, and 12 do not need fast registers for
fast execution.

Kernel 2 can use as many as 40 or more fast registers
if its loop is executed enough times and if start-limit is
large enough. The reason for this behavior is that kernel
2 computes the inner products of sub-vectors of length
five, and the unbalanced summation tree causes some

Table 1: Number of Fast Registers Required and
Number of Times Fast Registers Used (Slow-
Register Read-Time = 2, Slow-Register Write-
Time = 1).

l-

Kernel
1 1 2
2 1 1
3 3 9
4 4 11
5 1 1993
0 1 1995
7 1 2
8 1 2
9 1 1

10 1 8
11 1 1000
12 0 0
13 .2 364
14 2 606

Number Parallel Starts

2 2
3 9
3 1 1.
1 lQQi!
1 1994
2 3
2 3
2 2
2 16
1 999
0 0
2 391
2 600

4 5
4 4
3 9
3 11
1 1992
1 1994
4 5
4 5
4 4
4 32
1 999
0 0
2 391
2 607

1

40 88
3 9
3 11
1 1992
1 1894
8 8
8 8
8 8
8 64
1 998
0 0
2 391
2 607

results to wait longer before they are used. Better
scheduling of the operations :in this kernel would elim-
inate the anomalous behavior.

These results summarized in table 1 show that only a
few fast registers can be effectively used for temporary-
result storage.

The ratios of execution times of all kernels with
mostly slow registers to the execution times with all fast
registers are shown in table 2. The number of fast regis-
ters are the same as the maximum required in table 1, the
slow-register read time is two ticks, and the slow-register

Table 2: Ratios of Times for Simulated Execution
with Few Fast Registers and Unlimited Slow Re-
gisters to Times with Unlimited Fast Registers,
for a-Tick Slow Read, l-Tick Slow Write.

F
1
2
3
4
5
6
7
8
9

10
11
12
13
14 -

Number Parallel Starts
1

1 .oo
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1 .oo
1 .oo
1 .oo
1.00

2
1.00
1.00
1.00
1 .oo
1.00
1.00
1 .oo
1.00
1.00
1 .oo
1.00
1.00
1.00
1.00

4
1.00
1.00
1.00
1.01
1.00
1.00
1.00
1 .oo
1.00
1.00
1.00
1.00
1.00
1.00

8
1.00
1.02
1.01
1.03
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

350

write time is one tick. Almost without exception, the
programs run no slower with mostly slow registers than
with all fast registers. In the worst case, kernel 4 with a
start-limit of eight requires 3% more time to execute with
mostiy slow registers than with all fast registers.

The results of simulations when the slow read time is
increased to three ticks are summarized in table 3. There
is a worst case degradation of 5% for kernel 4 and a
worst case degradation of 12% for kernel 14. For most of
the kernels most of the time, however, the execution
times and fast register usages are the same as when the
slow read time is two ticks.

Table 5: Ratios of Times for Simulated Execution
with Few Fast Registers and Unlimited Slow Re-
gisters to Times with Unlimited Fast Registers,
for Slow-Register Read-Time = 3, Slow-RegSster
Write-Time 3 1.

-

i-
2
3
4
5
6
7
8
9

10
11
12
13
14 -

Number Parallel Starts
I

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.04

1.00
1.00
1.00
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.12

4
1.00
1.01
1.01
1.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.12

8
1.00
1.03
1.02
1.05
1.00
1.00
1.01
1.01
1.01
1.01
1.00
1.01
1.00
1.12

If the slow-register read time is increased to five
ticks, the execution times are as much as 20% greater
than execution times for all fast registers, so five-tick slow
registers are not nearly se useful as faster registers.

These results suggest that three different register
speeds could be useful: a small set of less-than-one-tick
registers for the most critical operations, a larger set of
two-tick registers for moderately critical operations, and
an even larger set of three-tick registers for the non-
critical operations.

The results summarized in figures la-ln and in
tables l-3 suggest that a small set of high speed registers
supplementing a large set of slower registers provide the
same performance as an unlimited set of high speed regis-
ters. This performance is about a factor of two faster
than if only eight registers are provided.

3. A Hierarchical, General-Purpose Register
Organization

Consider the design of a set of 1024 general-purpose
registers, a subset of which can be accessed in less than
one clock tick. Note that accessing one of many registers
requires more time than accessing one of a few registers,
because the many registers require more levels of logic to
multiplex than do the few registers, and, therefore,
increasing the number of registers increases the worst-
case access time.

The organization of one bit of a hierarchical set of
registers is shown in figure 2. This register set can sup-
port up to two register reads and one register write each
clock tick. At the left of figure 2 are 960 registers, organ-
ized as 30 sets of 32 registers each. A collection of 30
pairs of 32:l multiplexers select the contents of any two
registers. The multiplexer outputs are held in 30 pairs of
latches controlled by the system clock. In the middle of
the figure, 59 additional registers and the 30 pairs of
latches feed a pair of 89:l multiplexers, the outputs of
which are held in a pair of latches controlled by the sys-
tem clock. At the right of figure 2, five additional regis-
ters plus the pair of latches plus f other functional unit
outputs are selected by a pair of (?+f):l multiplexers.
The outputs of these last two multiplexers feed a logical
functional unit that performs operations like AND, OR,
exclusive-OR, etc. The logical functional unit output
feeds back to the five close registers, and is also held in a
latch controlled by the system clock. The output of this
latch is fanned out to the 59 middle registers and to the
960 distant registers. In addition, a pair of 7:l multi-
plexers can send the contents of any of the registers to
the other functional units in the CPU.

Figure 2: Organization of a One-Bit Slice of a
Hierarchical Register Set.

351

Distant registers can be read and sent to the logical
functional unit in two clock ticks, middle registers can be
read and sent to the logical functional unit in one clock
tick, and close registers can be read and sent to the logi-
cal functional unit in less than one clock tick. Read
addresses reach the distant multiplexers directly from the
operation start hardware, they reach the middle multi-
plexers after a one-tick delay, and they reach the close
multiplexers after a twptick delay.

The output of the logical functional unit can be writ
ten to any close register in the same clock tick and to the
middle and distant registers in the next tick. Decoded
write addresses reach the close registers at the same time
that the read addresses reach the close multiplexers.
Decoded write addresses reach the middle and distant
registers one tick after read addresses reach the close
multiplexers.

In order to support a start-limit of eight, this
hierarchical-register organization must be generalized to
support up to 16 register-reads and eight register-writes
each clock tick. This generalization and other implemen-
tation details are discussed by Swensen [lo].

4. Discussion

4.1. Hierarchical-Register Allocation

Close, middle, and distant registers should be allo-
cated such that close registers are used for the most
time-critical temporary results, middle registers are used
for less time-critical temporary results, and distant regis-
ters are used for even less time-critical temporary results.

As long as an operation is separated from its source
operations by at least

start-limit * (operation-time +write-time+ read-time)

other operations, it can start without any wait. (Note
that even if data forwarding is used, the result must be
written into some latch, and the destination operation
must select from some number of source latches and
registers, so a write time and a read time must still be
included in the inter-operation separation.) Operations
are allocated distant result-registers, and are scheduled EO
that they are separated from their source operations
where possible. Based upon the studies summarized in
section 2, with 512 or more distant registers there should
always be enough distant registers for all temporary
results. For pairs of operations which cannot be
scheduled far enough apart, the available middle registers
are allocated to the more time-critical temporary results,
and the available fast registers are allocated to the most
time-critical temporary results.

The use of registers with different speeds undoubt-
edly complicates the task of automatic register allocation.
However, the use of a large number of registers simplifies
some aspects of register allocation, because there should
always be enough registers available for temporary
results. Therefore, the net effect may be only a slight
increase in compiler complexity.

4.2. Addressing Many Registere

With 1024 registers, three-address instructions
require 30 bits to specify all three register operands expli-
citly. Relative to a shorter instruction fonmat, more
instruction-stream bandwidth and a larger instruction
buffer are required to achieve the same instruction-issue
performance.

It is possible to address the 1024 registers by specify-
ing one register operand explicitly using a ten-bit address,
and by specifying the rema.ining register or registers
indirectly, using fewer bits. Each time an instruction
with a register destination issues, the ten-bit, register
address is added to a queue of register addresses. Regis-
ter source specifiers are three bits long and they select
which of the last eight registers written is to be used M
the operand. If both source registers are not among the
last eight written, a 30-bit, long-format instruction is
used.

The sequence of written registers can be determined
at compile time, so the correct specification can be deter-
mined then, as well. In addition, each register destination
can be determined before the instruction actually issues,
so the queue can be updated enough in advance that
instructions can issue without delays. With only eight
queue elements, the addresses can be selected quickly.
Furthermore, results tend to be used soon after they are
written, as discussed by Swensen [lo], so very often the
desired result is one of the last eight written.

4.2. Other Issues

Computers with many registers have long context-
switch times. This ,is not a major disadvantage for
scientific computers, however, because time-critical termi-
nal and disk input and output operations are typically
serviced by other computers dedicated to the tasks. In a
time-sharing environment, the minimum running time
quantum can be increased to the point where context-
switch time is insignificant relative to running time. For
procedure and function calls, most of the registers are not
saved; the large number of registers allows different sub-
sets of registers to be allocated to different procedures
and functions.

In order to read distant-register operands in time,
instructions with operation specifications must reach the
start hardware at least two ticks before operations are
actually started. This increases the delay following a con-
ditional branch before operations start again. This also
forces any hardware reservation mechanisms to check the
availability of registers as much as two ticks in the
future, or longer if reservation checking takes more than
one tick. With many close/distant registers there is,
thus, a strong motivation to perform as much reservation
checking as possible at compile time.

352

5. Conclusione
Execution of parallel sections of scientific programs

on an architecture with 256 or more registers can be more
than twice aa fast as execution on a similar architecture
with only eight registers. This is because the availability
of many registers allow operations to be scheduled for
maximum overlap of execution, rather than for minimum
usage of registers. The greater the overlap of operation
execution (either because of longer execution times or
because more operations are started each tick), the more
registers that are needed to hold the temporary results.
The longer access times of large register sets does not
significantly increase the execution time of parallel pro-
grams because a register’s access can be overlapped with
the execution of other operations.

Execution of serial sections of scientific programs is
not any faster with many registers than it is with a few
registers, because the serial dependencies prevent most of
the overap of operation execution. Longer register-access
times degrade performance because the operand accesses
can not be overlapped with the execution of other opera-
tions.

Fortunately, programs do not require many registers
at the same time that they require fast registers, so it is
possible to use a large set of registers, a few of which are
fast, and most of which are slow. A hierarchical organi-
zation of registers that provides direct access to a small
set of registers and pipelined access to the remaining
registers can support fast execution of both serial and
parallel sections of scientific programs. Register alloca-
tion, while more complex than for a uniform set of regis-
ters, is straightforward. The instruction-stream
bandwidth requirements for the large set of registers can
be reduced by using limited, indirect addressing of the
registers.

For architectures that are oriented towards vector
processing, vector registers probably provide the necea-
sary temporary storage more efficiently than hierarchical,
general-purpose registers. In fact, vector registers can
even be generalized to support fast serial execution [lo).
However, many parallel programs do not vectorize easily,
so that an architecture with a large, hierarchical,
general-purpose register set may support faster execution
than a vector architecture.

Acknowledgements

This work was supported in part by Lawrence Liver-
more National Laboratories, LLNL Contract 4685505.
We gratefully acknowledge the continued enthusiastic
support of the scientists at Livermore, in particular
George Michael and John Ranelletti.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Control Data Corporation, Control Data 7600 Com-
puter System: Preliminary Reference Manual, Con-
trol Data Corporation, Minneapolis (circa lQ70).

Cray Research, Inc., “Cray-1 Computer Systems:
Cray-1 S Series Hardware Reference Manual,” HR-
0808, Mendota Heights, Minn. (1981).

Cray Research, Inc., “Cray Computer Systems:
Cray X-MI’ Model 48 Mainframe Reference
Manual,” HR-0097, Mendota Heights, Minn. (1984).

Cray Research, Inc., “Gray Computer Systems:
Cray-2 Hardware Reference Manual,” HR-2000,
Mendota Heights, Minn. (1985).

Denelcor, Inc., “HEP Hardware Reference Manual,”
9000003, Denver (1982).

ETA Systems, Inc., “Mainframe Subsystem Equip-
ment Specification,” 003106, St. Paul, Minn. (Febru-
ary 27, 1987).

ETA Systems, Inc., “MainfraTJ Subsystem Instruc-
tion Specification for the ETA ,” 000211, St. Paul,
Minn. (June 4, 1987).

D.J. Kuck, The Structure of Computers and Compu-
tations: Volume One, Wiley, New York (1978).

F.H. McMahon, “LLNL FORTRANS KERNELS:
MFLOPS,” Lawrence Livermore National Labora-
tory (March 1984).

J.A. Swensen, “High-Bandwidth/Low-Latency Tem-
porary Storage for Supercomputers,” PhD Disserta-
tion: University of California at Berkeley, Report
No. UCB/CSD 87/383, University of California at
Berkeley, Berkeley, California (December 1887).

353

APPENDIX A

Livermore Kernel 1: Hydro Excerpt
for k = 1 to 400

z[k] = q+y[k]*(r*r[k+lo]+t*t[k+ll])

Livermore Kernel 2: MLR, Inner Product
for k = 1 to 40*5 by 5

tp[k] = r[k]*z[k]+z[k+l]*z[k+l]+r[k+2]*z[k+2]
f z[k+3]*z[k+3]+z[k+4]*z[k+4]

Livermore Kernel 3: Inner Product
for k = 1 to 1024

Q = q+z[k]*2[k]

Livermore Kernel 4: Banded Linear Equations
for 1 = 7 to 107 by 50

for j = 1 to 128
z[/-l] = z[l-l]-z[l+j-l]*y[j]

Livermore Kernel 5: Tri-Diagonal Elimination, Below
Diagonal
for i = 2 to 997

z[i] = z[aj*(y[i]-z[i-11)

Livermore Kernel 6: Tri-Diagonal Elimination, Above
Diagonal
for i = 997-l downto 1

44 = z[i]--z[i]*z[i+l]

Livermore Kernei 7: Equation of State Excerpt
for m = 1 to 120

z[m] = u[m]+f*(z[m]+r*y[m])
+ t*(u[m+3]+t*(u[m+2]+r*u[m+l])
+ t*(u[m+6]+r*(u[m+5]+r*u[m+4])))

Livermore Kernel 8: PDE Integration
for kx = 2 to 3

for ky = 2 to 20
dul[ky] = ul[kz,ky+l,nll]-ul[kz,ky-l,flll]
du2[ky] = u2[kz,ky+l,nll]-utl[kz,ky-l,nll]

du 3hl = u3[kz,ky+l,nll]-u3[kz,ky-l,nll]
ul[kz,ky,nl2] = ul[kz,ky,nll]

+ alltdul[ky]+a12*du2[ky]+a13*du3[ky]
+ Sig*(U1[k~+l,ky,U~l]-2.*Ul[k~,ky,fl~l]

+ul[kz-l,ky,nll])
u2[kz,ky,nl2] = u2[kz,ky,nll]

+ a21*dul[ky]+a22*du2[ky]+a23rdu3[ky]
+ sig*(u2[kz+l,ky,nll]-2.*u2[kz,ky,nll]
+u2[kz-l,ky,nll])

u3[kz,ky,nl2] = u3[kz,ky,nll]
+ a31*dul[ky]+a32*du2[ky]+a33*du3[ky]
+ sig*(u3[kz+l,ky,nll]-2.*u3[kz,ky,nll]
+u3[kz-l,ky,nll])

Livermore Kernel 9: Integrate Predictors
for i = 1 to 100

P41,il = bm28*pz[13,i]+bm27*pz[l2,i]+bm26*pz[ll,i]
+ bm25*pz[lO,i]+bm24*pz[9,i]+bm23tpz[8,i]
+ bm22*pz[7,i]+cO*(pz[5,i]+pz[6,i])+pz[3,i]

Difference Predictors Livermore Kernel 10:
for i = 1 to 100

;:
= cz[S,i]
= ar -pz [S,i]

psf5,i] = at
cr = br -pz [S,i]
pz[6,i] = br

= cr -pz[7,i]
iii]7,i] = cr
br = ar -pz [8,i]
pz[8,i] = at
cr = br -pz [Q,i]
pz[Q,i] = br
or = cr -pz [lO,i]
pz[lO,i] = cr
br = at -pz[ll,i]
pz[ll,i] = ar

cr = br -pl[12,i]
pz[l&i] = br
pz[l4,i] = cr -p2[13,i]
pz[13,i] = cr

Livermore Kernel 11: First Sum
for k = 2 to 999

44 = z[k-l]+y[k]

Livermore Kernel 12: First Diff.
for k = 1 to 1000

Sk1 = YP+ll-dkl

Livermore Kernel 13: 2-D Particle Pusher
for ip = 1 to 128

il = p[l,ip]

= p[Vpl
;;3,ip] = p[3,ip]+b[il,jl]
PP,~Pl = p[4,ip]+c[il,jl]
p [Gpl = p [l,+l +pP,+l
PIVPI = p P,ipl +p P,iPl
i2 = p[l,ip]
i2 = PIVPI
p[l,ip] = p[l,ip]+y[i2+32]
p[2,ip] = p[2,ip]+r[j2+32]
i2 = i2+e[i2+32]
j2 = j2+f[j2+32]
h [i2, j2] = h[i2,j2]+1.0

Livermore Kernel 14: 1-D Particle Pusher
for k = 1 to 150

is = grd[k]
xi = iz
uz[k] = uz[k]+ez[iz]+(z:r[k]-zi)+dez[iz]

=z PI = ..[k]+uz[k]+flz
ir = zz[k]
ri = it
rxl = zz[k]-ri
:r = ir AND 63
zzjk] = ti+rzl
rh [ir] = rh[ir]+l.O-rzl
rh [ir+l] = rh[ir+l]+rzl

354

