
From Yale-45 to Yale-90: Let Us Not
Bother the Programmers

Guri Sohi

University of Wisconsin-Madison

Celebrating Yale@75
September 19, 2014

Outline

• Where have we come from

• Where are we are likely going

2

Where From: Hardware

• Primary goal was performance

• Continuing increase in performance
without demands on software

• Lots of “under the hood” innovations in
cores (e.g., Big MF branch predictors)
– Key enabling technique was sequential

appearance and precise exceptions

3

Where From: Hardware

• Put more on core to achieve certain objective

– Argument is “improve efficiency”

– Multimedia, vectors, 64-bit, etc.

– Incremental cost

– Cores have become a “catch all”

– Good for all, but not the most efficient for any

• Efficiency became important

– Emergence of more efficient, special-purpose
solutions (e.g., GPUs)

4

Where From: Software

• Few applications, few customers

• “Shrink Wrap” software: few applications
and lots of customers

• Ubiquitous software: lots of diverse
applications and lots of software

5

Where From: Software

• No worries when everything “under the hood”

• Significant challenges with multicore
– Need to parallelize

• If biting the bullet, might as well go all the way
– E.g., GPUs

• But mostly avoid difficulty and embrace
convenience
– Even if inefficient

6

Important Lessons

• When transistor budgets exceed certain amounts,
the importance of certain techniques decreases,
making room for other techniques

• Relative importance of special techniques
diminishes over time

• Convenience key to software proliferation

• Mass volumes drive end result

7

Future Academic Research

• General-purpose App processing Units (GPAPUs)

• XY-DRAM

• 4D integration

– Heterogeneity (XY-DRAM)

– Dynamically varying distance between 3D layers

• Revisit everything (e.g., cache design and DRAM
scheduling) with 4D integration with GPAPUs

8

Future

• Primary design goal: energy

• Hardware: use more transistors to save
energy

• Software: keep doing things “under the
hood”

9

Future

• Novel uniprocessor cores

• Lower energy devices
– prone to errors

• Customized computation energy
reducers (a.k.a. accelerators)
– If can use software library, why use on multiple

CPUs? Why not on customized hardware?

10

Processor Usage

• Have OS core, user core

• Have core that can only run 32/64-bit code

– Specialization for 32-bit operands

• Have core that doesn’t support precise interrupts

• Many other forms of limited functionality cores

– Improve performance

– Reduce energy

11

Processor Usage

• Steady demultiplexing of what was done on a
general-purpose core

• Computation spreading

– OS/user

• Separating specific code to accelerators

• Other forms of stripping out functionality in
general purpose core

• “Mostly general-purpose” core

12

Hardware Going Forward

• Multiple mostly general-purpose processing cores

– dynamically specialized

• Some “special-purpose” hardware

• For more efficient processing

• Over-provisioning: pool of available (i.e., powered
on) resources might change frequently

– Now called “dark silicon”

• Will need to be transparent to software

13

What all is needed?

• Develop picks and shovels

• What are the mechanisms to ease software
use of diverse hardware?

• Are we going to have higher level of
exceptions/restart?

• Does the microarchitecture need low level
restart?

– Precise/non-precise core

14

