“Your vision of the future of computer architecture. From the man who gave us MMX, refused to kill the golden goose, and worked for a time in the same box with Mark McDermott”
Situation

- Flew 11,482 km to greet Yale 😊
- Have to fight again with Bob
- What can I fill-in after this extraordinary speaker?
- Defiantly a challenge
My moto:
Sailing - wind shift
Sailing competition
getting first

- What is the Strategy of Boat 1?
- What is the Strategy of Boat 2?

My Moto: Do not follow → Invent
Future Architecture Research
Big Data environment
Outline

- Big Data need ➔ reduction in energy/task
- Power/Energy - the opportunities
 - Heterogeneous systems – past thoughts
 - Resource allocation in a Heterogeneous system
 - Efficient computation ➔ reduction of Data movements
 - Avoid-the-Valley – past thoughts, deferent perspective
 - Big Data execution – where should we preform execution of “Funnel” functions
Big Data ➔
reduction in energy/task

- Hadoop/Spark Calls for multiple computing engines taking care of “ONE TASK”
- Computing Centers’ attention was shifted from Performance toward energy saving
- The need for huge amount of processing ➔ huge consumption of energy

See Google centers…
Power/Energy the opportunities

- Heterogeneous Systems – Past findings
 - Resource *allocation* in a Heterogeneous system - MA

- Efficient computation → reduction of Data movements
 - Avoid-the-Valley – past thoughts, deferent perspective
 - Big Data execution – where should we preform execution of “Funnel” functions
Heterogeneous Computing: Application Specific Accelerators

Continue performance trend using Heterogeneous computing to bypass power and energy hurdles
Heterogeneous Computing
MultiAmdahl:

Optimization using Lagrange multipliers
Minimize execution time (T) under a Area (a) constraint

\[
t_j F'_j(p_j) = t_i F'_i(p_i)
\]

F' = derivation of the accelerator function
p_i = Power of the i-th accelerator
\(t_i\) = Execution time on reference computer
Power/Energy the opportunities

- Heterogeneous Systems – Past findings
 - Resource allocation in a Heterogeneous system

- Efficient computation ➔ reduction of Data movements
 - Avoid-the-Valley – past thoughts, different perspective
 - Big Data execution – where should we perform execution of “Funnel” functions
Power/Energy the opportunities

Efficient computation \(\rightarrow\) reduction of Data movements

- Avoid-the-Valley – past research \(\rightarrow\) power implications
- The Funnel PreProcessing (FPP):
 ak’a “In-Place-Computing” =
 Compute at the most energy effective place
Avoid-the-valley:
Many cores behind a common cache running many threads

Three regions: **MC Region**, the valley, **MT Region**

- **Performance**
- **MC region**
- The valley
- **MT region**

Performance trend
Avoid the Valley

Parameter: Cache Size

* At this point: unlimited BW to memory
Performance/Power $\frac{1}{\text{(Energy Per Instruction)}}$

PER/PWR decline!
Big Data → Data usage message
Input: Unstructured data

Structured data (aggregation)

Data structuring

Model creation

Model usage @ client
Existing Big data:
Data movements

Copy of data ~nJoules/Byte

Cache/Memory are not effective if:

Cache related:
Reuse distance: >1M access

Memory related:
Reuse distance: >1G access

1. Why used-once data should move all the way to the “BIG” CPU?
2. Why use-once data is copied to memory?
Initial analysis: Hadoop-grep memory access

- Analysis of memory Hadoop-grep memory accesses was performed
- Unique addresses have been identified
- In each pack (10M memory accesses), we counted:
 - number of unique addresses that have been single accessed
 - number of unique addresses that have been accessed multiple times
- About 50% of Hadoop-grep memory references have been single access
Big Data

Suggestion: Data movements reduction and free-up resources

Process Read-Once data close-to-IO
(Funnel PreProcessing FPP)

Implications:
- Free huge amount of memory for useful work (think Hadoop/Spark)
- Process funnel functions by small efficient engines
- Save Read/Write DRAM energy
- Think about Big Data…
Open issues for research

- SW and OS
 - Co-Processor or
 - Heterogeneous system
- Compatibility
- Application awareness
- …
Summary

The Funnel functions – execute close to the data source

- Free up system’s memory
- Reduction of Data movement
- Simple energy efficient engines at the front end

Issues
- Compatibility issue: Apps, OS,
- Amount of energy saving...
-

Thank You