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Abstract—Modern out-of-order cores rely on a large in-
struction supply from the processor frontend to achieve high
performance. This requires building wider pipelines with more
accurate branch predictors. However, scaling the pipeline width
is becoming more challenging due to limitations on the number
of instructions that can be renamed and branches that can
be predicted in a single cycle. Moreover, mispredictions reduce
the useful fetch bandwidth that can be extracted from a wider
frontend.

Our work, Alternate Path Fetch (APF), effectively uses a wide
frontend by dividing the pipeline into two parallel sections. One
processes regular instructions, and the other uses a separate
pipeline to Branch Predict, Fetch, Decode, and partially Rename
instructions on the alternate path of hard-to-predict (H2P)
branches. The pipelines operate simultaneously using a Parallel-
Fetch scheme we developed. This allows APF to more efficiently
utilize the bandwidth of a wider frontend without the overhead
associated with building a monolithic, wider pipeline.

APF improves performance by reducing the pipeline re-fill
delay on branch mispredictions. Unlike other solutions that fully
rename and execute instructions on both sides of a branch, we
show that stopping after partial Renaming on the alternate path
provides better performance through improved coverage and
avoids the complexity associated with further processing. APF
provides a 5% geomean speedup over an aggressive 8-wide out-
of-order core.

Index Terms—Branch Prediction, Predication

I. INTRODUCTION

Modern out-of-order (OoO) cores achieve high levels of
single-thread performance by speculating on large instruction
windows and building deeper pipelines. The execution back-
end of these cores needs to be driven by a large instruction
supply. This requires wider pipelines supported by accurate
branch prediction. OoO pipelines have grown wider over the
years: many modern designs have an 8-wide frontend [2],
[3], [5]. However, further scaling is challenging. To build
a wider pipeline, the width of all frontend stages (Branch
Prediction, Fetch, Decode, and Rename) needs to be increased.
The Fetch and Decode logic is mostly parallel and relatively
easier to scale. Increasing Branch Prediction and Rename
bandwidth, however, poses major limitations [29]. Moreover,
branch mispredictions are still a problem, even with modern
Branch Predictors such as TAGE-SC-L [37] and Hashed
Perceptron [21], as frequent branch mispredictions from a
few hard-to-predict (H2P) branches [46] reduce the number
of useful instructions fetched by a wider frontend. We posit
that the additional fetch bandwidth obtained from a wider

frontend is better utilized for fetching the alternate path
of H2P branches.

Building a wider Fetch stage requires reading more bytes
from the I-Cache every cycle which can be easily done by
banking the I-Cache such that consecutive cache lines are
stored in different banks. The Decode width can be increased
by adding more parallel decoders1. These changes require
additional logic but are unlikely to impact the critical path
and increase pipeline latency.

The Branch Predictor (BP) and Branch Target Buffer (BTB)
limit frontend bandwidth as current branch prediction al-
gorithms are sequential. To predict a branch, the Program
Counter (PC) and branch history are used to access the BP
and BTB tables, which in turn update these registers. Accesses
for a subsequent prediction cannot begin until the previous
prediction finishes, which takes at least one cycle. Most current
predictor designs can predict up to one taken branch per cycle.
In many applications, this severely limits the effect of a wider
pipeline due to the density of taken branches. While there has
been some prior work on predicting multiple taken branches
per cycle [30], [38], [45], these are either expensive and hard
to implement on current predictors or only work in specific
scenarios.

Fig. 1. Performance of a 16-wide OoO core with one extra cycle on Rename
relative to an 8-wide baseline

In the Rename stage, each instruction within a fetch packet
(instructions fetched in the same cycle) needs to check whether
it depends on any older instructions within that fetch packet
before accessing the Register Alias Table (RAT). Increasing

1In x86 machines, length decoding is sequential; going wider requires more
logic than just duplicating existing decoders and increases the pipeline latency.
However, using pre-decode bits or a uop cache allow x86 machines to provide
higher decode bandwidth without additional latency.
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the Rename width directly impacts the critical path of the RAT
read and dependency checking logic [29] and thus increases
the number of pipeline stages in Rename [35]. Additional
frontend latency reduces performance as it takes longer to re-
fill a deeper pipeline after a branch misprediction. Even adding
one additional cycle of Rename latency hurts performance for
applications sensitive to branch mispredictions. Fig.1 shows
the performance of a 16-wide OoO core2 relative to an 8-
wide baseline on SPEC2017 Integer and GAP benchmarks.
Workloads with a high taken branch density show very lit-
tle benefit. Benchmarks with high branch misses-per-kilo-
instructions (MPKI) (Fig.2) drop in performance due to the
increased misprediction latency.

Fig. 2. Conditional Branch Mispredictions (8-wide core)

Our work, Alternate Path Fetch, aims to fetch and process
instructions on both paths: the predicted path as specified
by the branch predictor, and the alternate path which inverts
its prediction, after H2P conditional branches. When an H2P
branch resolves, if the prediction is incorrect, the previously
fetched alternate path instructions can be preemptively inserted
into the pipeline. This reduces the pipeline re-fill delay: the
time it takes for correct path instructions to enter the backend
after a branch misprediction is resolved, and in turn improves
performance.

Alternate Path Fetch (APF) processes instructions on a
separate pipeline until RAT access and is supported by a
low-overhead parallel-fetch mechanism for the two paths.
This breaks the 16-wide frontend into two separate pipelines
and avoids the Renaming and predictor limitations associated
with a normal 16-wide core. It does not add any additional
Allocation width, functional units, or Retire width, but still
provides significantly better performance. Our contributions
are summarized as follows:

• We propose Alternate Path Fetch (APF), a technique
that effectively utilizes the fetch bandwidth of a wider
frontend.

• To support multiple taken predictions every cycle, we
introduce a scheme that breaks the TAGE-SC-L predictor
into several smaller predictors. Together with banking the
I-Cache and BTB, this enables APF to predict branches
and fetch instructions for both paths in parallel without
adding additional ports to these structures.

2The Allocation width, number of functional units, and Retire width are
also scaled for the 16-wide OoO core to match the frontend.

• We analyze the trade-offs associated with the depth of the
alternate path pipeline and show that processing alternate
path instructions up until RAT access across multiple H2P
branches both provides better performance and reduces
hardware overhead and design complexity.

• When selecting an H2P branch for APF, we show that
an oldest-first scheme with priority given to low TAGE
confidence branches works well as it reduces wasted APF
cycles and provides good misprediction coverage.

II. PRIOR WORK

The idea of fetching and executing instructions on both
paths of a branch was first introduced by Eager Execution.
Doing this for all branches has an exponential overhead,
so later research looked at several variants to restrict the
exponential branching [42] and limited Eager Execution to
low confidence branches [26], [43], [44]. However, these
approaches require a significant amount of hardware support
to execute multiple alternate paths in parallel.

Predication techniques also fetch and execute both paths
after a branch but only if the control flows after that branch
converge within a few instructions. Compiler-only predication
techniques [10], [16] take advantage of if-else statements
with short bodies, commonly referred to as hammocks. They
execute instructions on both paths and selectively commit the
results on one path once the branch predicate is known. Wish
Branches [23] dynamically pick between executing predicated
code and performing branch prediction based on whether the
prediction is accurate. Dynamic Predication techniques [17],
[22], [25] find branches that can be predicated at runtime and
do not require compiler support.

Predication-based techniques have a low misprediction cov-
erage as they only target certain types of branches. The state-
of-the-art, Auto-Predication of Critical Branches (ACB), relies
on detecting specific code layouts to find the merge point
for an H2P branch. ACB increases backend pressure as in-
structions from both paths compete for execution resources. In
contrast, APF works for any mispredicted conditional branch
and can target branches that are not amenable to predication.
It does not have the complexity associated with renaming both
paths and selectively discarding wrong path instructions. APF
only executes predicted path instructions and does not increase
backend pressure

The concept of not executing alternate path instructions was
first introduced by Dual Path Instruction Processing (DPIP)
[11]. DPIP performs Renaming and Allocation for alternate
path instructions which has large hardware costs and limits
which branches it can target. Moreover, it shares frontend
cycles with the predicted path which is detrimental to per-
formance with modern high-accuracy branch predictors as it
takes useful fetch cycles away from the predicted path (which
is often correct). In fact, most prior work on processing two
paths reduce the effective fetch bandwidth available to the
program as they cannot fetch alternate path instructions in
parallel with the predicted path, which APF can do. Overall,
APF does better both in terms of performance and hardware
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Fig. 3. Example showing how Alternate Path Fetch works. Each circular node represents an H2P branch. Branches are fetched in top-to-bottom order.

overhead. A detailed comparison against DPIP is provided in
Section IV.

There is a clear tradeoff between coverage and per-branch
saving associated with processing alternate path instructions.
Eager execution and predication execute alternate path instruc-
tions and have high per-branch savings. DPIP stops short of
execution. APF on the other hand, processes instruction only
up until RAT access. Because it does not incur the overhead
associated with Renaming, Allocating, or Executing alternate
path instructions, APF can target any conditional branch
misprediction and has comparatively higher coverage.

Misprediction Recovery Caches [15] record the correct
path instructions seen after a mispredicted branch and replay
them to reduce the latency of fetching and decoding the
right path instructions. [19] similarly uses a Misprediction
Recovery Buffer to replay prediction packets on recovery. Just-
in-time hedge fetching [36] fetches the first few wrong path
instructions into a buffer to avoid the I-cache access latency
after a misprediction recovery. These solutions can only fetch
a few instructions until the first branch as they cannot predict
branches on the alternate path. Our banked BP design allows
us to predict alternate path branches in parallel with
the predicted path. Thus, we can process significantly more
instructions on the alternate path allowing APF to save more
cycles of re-fill penalty.

Elastic Fetch [31] dynamically converts a decoupled pre-
dictor to a coupled one, eliminating the cycle(s) required
for prediction and accessing the prediction queue (can only
save 1-2 cycles). Uop caches [40] reduce the baseline decode
latency by storing decoded uops, which decreases the impact
of mispredictions. However, APF can be employed on top of
processors with these mechanisms and still provides substan-
tial performance benefits (Section VI-G).

APF works in tandem with any solution that targets the full
branch misprediction penalty for specific types of branches
rather than competing with them. If a different solution reliably
covers the branches that APF improves, APF can instead

focus on other branch mispredictions and still provide additive
benefits.

III. ALTERNATE PATH FETCH

Alternate Path Fetch uses a separate frontend, the APF
pipeline, to process instructions on the alternate path for
conditional H2P branches. We examined the branch resolution
delays for various commercial products [1] [7] and selected an
aggressive baseline configuration that has 15 pipeline stages
in the frontend (Branch Prediction to Rename). The APF
pipeline is 13 stages deep as we only process alternate path
instructions up until RAT access. Alternate path instructions
are thus fetched and processed for a maximum of 13 cycles.
APF comprises the following steps:

• Find in-flight H2P branches.
• Fetch the alternate path for unresolved H2P branches.
• Save the fetched alternate path instructions to a buffer.
• Repeat for other unresolved H2P branches.
• If an H2P branch mispredicts, fill the main pipeline with

the saved instructions for that branch and resume fetching
from the last alternate path instruction.

This process is depicted with an example in Fig.3. The
program in the example consists of several H2P branches
depicted as nodes in a control flow graph and starts at the
top-left (Fig.3-(i)). When H2P branch A is encountered, the
APF pipeline begins fetching down the alternate path of branch
A alongside its predicted path (using a shadow PC and branch
history register). As instructions are fetched, subsequent H2P
branches may be seen on either path. In Fig.3-(ii), H2P branch
B is seen on the predicted path of A. Because the APF pipeline
is already fetching the alternate path for branch A, it cannot
begin APF for branch B. Instead, the PC and branch history
at branch B are saved. OoO cores already keep track of the
PC and history for all branches in the in-flight branch queue
so only an additional bit needs to be added to this queue
to indicate branch B was marked as H2P. Once branch B is
predicted, the main pipeline continues down its predicted path.
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In parallel, the APF pipeline continues fetching down the
alternate path of branch A and eventually reaches the H2P
branch X (Fig. 3-(ii)). Since the APF pipeline is busy, branch
X is marked as H2P in a shadow in-flight branch queue
(which saves the PC and history of branches on the alternate
path). Branch X is then predicted and the APF pipeline
continues fetching down the alternate path of A, which is now
the predicted path of X. Note that both branches B and X
can be predicted in the same cycle using the Parallel-Fetch
mechanism described in Section V-B.

This process continues until the APF pipeline is full (Fig.3-
(iii)). At this point, the alternate path instructions, the alternate
path PC and branch history at that point, and the shadow in-
flight branch queue are all copied over to an Alternate Path
Buffer. This frees up the APF pipeline so it can fetch down the
alternate path for the next H2P branch on the predicted path,
which is branch B (Fig. 3-(iv)). The Alternate Path Buffers
allow APF to fetch the alternate paths for multiple unresolved
H2P branches simultaneously. Since the APF pipeline does
not access the RAT, only the PC and branch history (which
are already saved in the in-flight branch queue) are needed
to begin fetching down the alternate path of a subsequent
H2P branch.

Eventually, branch A is resolved. At this point, one of two
things can happen. If branch A was correctly predicted, the
alternate path of A is incorrect. This path is then flushed from
the Alternate Path Buffers and we continue fetching down the
predicted path and currently active alternate path (Fig. 3-(v)).

If branch A was mispredicted, the alternate path of A is
in fact the correct path. In this case, all the saved alternate
path instructions are restored to the main pipeline registers,
and the PC and branch history are set to the saved values.
This is done by reading instructions out the buffers cycle
by cycle into the main pipeline stage register after the APF
pipeline (Section V-G). In parallel, all other instructions (on
the predicted and alternate paths) younger than branch A are
flushed. The final state of the pipeline after the misprediction
recovery is now reflected in Fig.3-(vi). After recovery, the state
of the frontend is exactly as if the correct path instructions
had been fetched and processed on the main pipeline for 13
cycles, except this happens in a single cycle. We now can
immediately start fetching instructions on the predicted path
of branch X as the PC and branch history have been updated to
their respective values when they were processing the alternate
path of A. The contents of the saved shadow in-flight branch
queue are also restored to the main pipeline. Since the queue
contains information about which branches were found to be
H2P on the alternate path, we can also begin fetching down the
alternate path for branch X in parallel. Note we do not consider
branches on the alternate path for APF until the alternate path
is found to be correct to avoid exponential branching.

A. APF on Large Footprint Applications

I-cache misses present another frontend bottleneck for ap-
plications with a large instruction footprint [12], [13], [41]. We
terminate Alternate Path Fetch for a branch on an I-Cache

miss and do not send this miss out to memory. As long as
these misses do not occur alongside branch mispredictions,
APF still improves performance on these applications.

Prior work such as Wrong-Path Instruction Prefetching [32]
attempts to prefetch the first I-cache line on the alternate
path of a branch. APF can be similarly modified to deal
with I-cache misses, but has different tradeoffs. For example,
APF would need to be active for longer and fetch alternate
paths of easy-to-predict branches to achieve larger prefetching
distances and get good coverage. Designing APF to work well
for I-cache misses requires significant changes and we leave
this to future work. Instead, we focus on dealing primarily
with branch mispredictions.

B. Depth of the APF pipeline
The depth of the alternate path pipeline affects both how

many H2P branches benefit from APF (misprediction cov-
erage) and the pipeline re-fill penalty saved for each of
these branches (per-branch savings). A deeper APF pipeline
increases the number of re-fill cycles saved per branch as the
alternate path instructions are processed for longer. However,
spending more time fetching down the alternate path of one
H2P branch reduces the number of APF cycles available to
other H2P branches. This happens when H2P branches are
clustered together. We observed that the improvement in per-
branch benefit generally outweighs the decrease in coverage
as the APF pipeline depth is increased (Section VI-D). This
is because the first few alternate paths are more likely to be
correct than later alternate paths. However, increasing the
pipeline depth beyond rename can significantly reduce
coverage, as explained in the next section.

IV. COMPARISON WITH DPIP

Dual Path Instruction Processing (DPIP) uses a custom low-
confidence predictor that works in tandem with its branch
predictor, gshare [28]. DPIP fetches alternate path instructions
for low-confidence branches. It has separate PC and branch
history registers for the alternate path, but time-shares the
frontend structures of the core in a round-robin fashion, i.e.,
the fetch unit fetches instructions on the predicted path for
one cycle and the alternate path for the next cycle. The
alternate path instructions perform Branch Prediction, Fetch,
Decode, and Rename (with a shadow copy of the RAT) and are
Allocated to a duplicated ROB, Load Queue, and Store Queue.
This approach limits performance and introduces significant
hardware overhead.

A. Processing Alternate Path Instructions beyond Rename
Increasing the depth of the alternate path pipeline to include

RAT access is much more expensive compared to prior stages
(Fig.4). This is because alternate path instructions that finish
Renaming can change the state of the RAT and Free List. The
state of both these structures thus needs to be saved for each
alternate path. Moreover, starting alternate path fetch at any
H2P branch would require saving the state of the RAT and
the Free List at all H2P branches on the predicted path and

1220



Fig. 4. Depth of the alternate path pipeline

each of the alternate paths. The number of the saved states
grows exponentially as H2P branches are encountered. Real
hardware can only target a limited number of H2P branches.

Dual Path Instruction Processing (DPIP) has a deeper
pipeline for processing alternate path instructions that extends
beyond Allocation. Since the alternate path instructions in
DPIP perform RAT access, it does not target any intermediate
branches encountered while fetching an alternate path to
eliminate the need for saving the state of the RAT and Free list
for branches on the predicted path. Referring to the example
in Fig.3, DPIP fetches down the alternate path of A but
ignores branch B on the predicted path. After fetching down
the alternate path of A, the next branch it targets is C. DPIP
processes instructions on the alternate path for 17 cycles and
misses out on any intermediate mispredicted branches for this
duration which severely limits its coverage. This applies to the
alternate path as well: DPIP cannot fetch the alternate path for
branch X (Fig.3-(vi)) as doing this would require recording the
state of the RAT and Free list for branches on the alternate
path.

DPIP also performs Allocation into the backend structures
for alternate path instructions. To do this, it needs shadow
Reservation Stations, a shadow Re-order Buffer, and shadow
Load and Store Queues to hold alternate path instructions.
Simple buffers cannot emulate the effect of allocation into
these structures as copying instructions from a buffer into
these structures cannot be done in a few cycles due to write
port limitations. Instead, the shadow structures become the
”correct” ones if the corresponding H2P branch is found to be
mispredicted. Duplicating the backend is expensive, even for
one additional path, and prohibitively so for multiple paths.
DPIP can only process one alternate path at a time and needs
to wait for the initiating branch to be resolved before it can
process another alternate path.

The coverage of DPIP is thus much lower due to the limi-
tations imposed by processing instructions beyond Rename.
Even though the per-branch benefit of DPIP is larger, the
overall performance of APF is much better. This trade-off is
quantitatively explored in Section VI (Fig.9 and Fig.10).

B. Time-Sharing the Frontend vs. Parallel-Fetch
An alternative to fetching the predicted and alternate paths

in parallel is to time-share the frontend structures across
different cycles. DPIP uses this scheme and distributes fetch
cycles in a round-robin fashion. However, splitting fetch cycles
between two paths, one of which is more likely, yields fewer

useful fetch cycles on average. Giving fetch cycles to the
alternate path of an H2P branch provides benefits only after
several H2P branches are seen on the predicted path. For
instance, it takes 7 branches with an accuracy of 80% for
the probability of the predicted path being correct to equal the
probability of the first alternate path being correct.

This effect is much more prominent with TAGE-SC-L since
it has higher accuracy (especially on H2P branches) compared
to gshare, which DPIP used. Time-sharing thus leads to lower
than baseline performance in some cases (Section VI-E). The
Parallel-Fetch scheme provides much better performance for
both APF and DPIP compared to time-sharing. However, DPIP
falls short of APF even with Parallel-Fetch.

V. IMPLEMENTATION DETAILS

The implementation for Alternate Path Fetch consists of
four major components: (a) the H2P Table which identifies
hard-to-predict branches, (b) banked BP, BTB, and I-Cache
which allow multiple parallel accesses, (c) the APF pipeline
stages which process alternate path instructions, and (d) the
Alternate Path Buffers which store the state of the APF
pipeline. The overall block diagram is shown in Fig. 5.

Fig. 5. Overview of Alternate Path Fetch

A. Baseline OoO Core
APF is implemented on top of a baseline OoO core with a

Decoupled Branch Predictor [34] and a 16-entry Fetch Queue.
The predictor can produce up to 1 taken prediction per cycle
or up to 32B worth of instructions per cycle, similar to many
industry products [2], [3], [5], [6], [19]. The Fetch stage
reads predictions from the Fetch Queue and accesses the I-
cache. The I-cache is banked to support cross-line accesses.
As mentioned earlier, the APF pipeline has 13 stages: 3 for
Prediction, 4 for Fetch, 4 for Decode, and 2 for Rename. Each
stage has a width of 8 uops.

B. Parallel-Fetch
APF needs to fetch instructions from two different points in

the instruction stream: the predicted path after a branch and
its alternate path. To achieve this, both paths need to have a
separate set of PC and Speculative Branch History registers.
Each set can then be used to predict branches and fetch
instructions in parallel if the BP, BTB, I-TLB, and I-Cache
have two read ports. However, these structures contribute
to most of the frontend area cost, and adding a read port
exponentially increases this. Banking is an alternative that has
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Fig. 6. Banking the Branch Predictor

a significantly lower overhead and is employed in most caches.
It works by dividing the cache into several memory banks,
each of which has an access port. A cache line is mapped
to a bank using certain bits of its address and performs read
and write operations only on that bank. This allows two cache
lines to be accessed in parallel if they map to different banks.

1) Banking the Branch Predictor: Banking the TAGE-SC-
L predictor is challenging as it consists of multiple tables,
each with different indexing. Instead of splitting up each
table, we propose using four 16-KB mini-TAGE-SC-Ls as
individual banks in place of the baseline 64-KB TAGE-SC-L.
The PC determines which predictor bank a branch goes to for
predictions and updates. To support two parallel predictions,
the PC and history registers for both paths are sent to all the
TAGE banks. If the bank bits for the two PCs are different,
two separate predictions can be read out of the predictor banks
in parallel (Fig.6). If there is a bank conflict, then priority is
given to the predicted path. This allows the BP to achieve a
throughput of two taken predictions per cycle when there are
no conflicts.

Banking TAGE-SC-L into several smaller predictors can de-
crease its accuracy. This is because each static branch requires
a variable number of predictor entries and branches may be
distributed across the four banks such that one particular bank
gets overloaded and faces capacity problems. This effect can
be reduced if the allocations are equally distributed across
the banks. Fig.7 shows the performance of various TAGE
banking configurations relative to an un-banked TAGE on
a baseline OoO core. Going from no banks to two banks
marginally improves performance as forcing certain branches
to go to a different bank can reduce aliasing. Moving to 4
or 8 banks hurts branch MPKI due to increased contention.
The average MPKI increases by 0.1 in the 4-bank and 8-bank
configurations. This reduces the performance of the baseline
by 0.5% but is more than made up for the performance
improvement of APF.

2) Choosing the Bank bits: The alternate path and pre-
dicted path instructions are often close to each other in
instruction memory for conditional branches. Using the lower
bits of the PC to determine the bank minimizes bank conflicts.
Most stalls due to bank conflicts only last for a single cycle
if the lower address bits are used as both paths normally
cycle through the same sequence of banks. This is common

Fig. 7. Effect of TAGE banking on Baseline Performance

2 TAGE banks bit0 = PC[0]⊕ PC[4]
4 TAGE banks bit0 = PC[0]⊕ PC[1]⊕ PC[5]⊕ PC[6]

bit1 = PC[2]⊕ PC[3]⊕ PC[4]⊕ PC[7]
8 TAGE banks bit0 = PC[0]⊕ PC[1]⊕ PC[2]

bit1 = PC[3]⊕ PC[5]⊕ PC[6]
bit2 = PC[4]⊕ PC[7]

I-Cache and BTB {bit1, bit0} = {PC[7], PC[6]}
TABLE I

BANK COMPUTATION

when banking the I-Cache but less so for the BP. The hashing
scheme we used for the BP is shown in Table I. We used the
4-TAGE configuration in all our experiments.

3) Banking the I-Cache and BTB: The I-Cache is banked
using bit 5 and bit 7 of the fetch address. Bit 5 is part of
the line offset as we use 64B lines. This splits each I-Cache
line into two 32B half-lines. Each group of half-lines goes
to a different bank. These groups are then further subdivided
into 2 banks based on bit 7, reaching a total of 4 banks. Both
paths can read either one 32B chunk or two sequential 32B
chunks split across two banks if the fetch packet requires two
half-lines. The same bits are used to bank the BTB (which is
organized as a region BTB with 64B regions).

The baseline performance is not affected by I-cache or
BTB banking. The frontend reads at most a 64B chunk from
the I-cache and BTB per cycle (enough for 8 instructions),
which is distributed across two consecutive half-lines. Since
consecutive half-lines are present on different banks, there
is never a bank conflict for I-cache or BTB accesses in the
baseline processor.

C. H2P Table
The H2P Table is responsible for marking static branches

that are good candidates for Alternate Path Fetch. The table
draws its insights from the Hard Branch Table proposed in
[18], [33]. It is a 2-bank, 8-way set associative structure with
128 entries, indexed with the cache-aligned address of the
branch PC. Each entry contains two 3-bit saturating counters
that correspond to two H2P branches in that cache line. Each
entry also contains two 6-bit fields to indicate the positions
of the H2P branch in the cache line. Each bank of the H2P
table is accessed once per cycle in parallel with the BTB
(for the predicted path and the alternate path), and the results
are compared against the BTB results to see if the counters
correspond to any branches being predicted during this cycle.
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This organization allows the counters for all the branches
predicted in a cycle to be read out in a single access. A counter
value of 0 indicates that entry is available for allocation and
the two counters for each entry are initialized to 0.

An entry in the H2P Table is created for a branch when it
mispredicts. Upon allocation, the counter for the branch is set
to 1. If both counters have a non-zero value, the allocation re-
quest is dropped. If the same branch subsequently mispredicts
again, its counter value is incremented. A branch is considered
H2P for Alternate Path Fetch if it has an entry in the H2P
Table and its counter value is greater than 2. All counters in
the H2P Table are decremented by 1 every 20k instructions so
that the counter values for branches that mispredict less often
than once every 20k instructions tend towards 0. Counters for
branches that are not H2P (have a counter value of 0) are
prioritized for replacement. The periodic decrement allows the
H2P table to mark branches above a certain MPKI threshold
(0.2 MPKI here). We experimented with various decrement
periods to find the best-performing parameters for APF.

D. Scheduling H2P Branches
1) Oldest-first ordering: Oldest-first ordering works well

when picking unresolved H2P branches for APF because the
alternate path for the oldest unresolved H2P branch is more
likely to be correct than that of a younger H2P branch. For
instance, if the prediction accuracy of an H2P branch is 80%,
then its alternate path is correct 20% of the time. But the
alternate path of the next H2P branch (assuming it has the
same accuracy) is correct only 80%×20%=16% of the time.
There are few instances where younger branches tend to have a
much lower prediction accuracy than older ones, in which case
this may not be true. However, dynamically determining these
probabilities to compute the optimal ordering is challenging.
Oldest-first is a simple algorithm that is easy to implement
and is often the best ordering.

Note that we only perform APF for branches on the main
pipeline. It does not make sense to perform APF for branches
in the APF pipeline as the probability that this path is correct
is even lower (20%×20%=4%). If a branch on the alternate
path is H2P, we only mark it as such and consider it for APF
if the alternate path is found to be the correct path.

The H2P Table tends to mark many unnecessary branches
as H2P to achieve high misprediction coverage. Marking too
many branches as H2P can hurt performance if many of them
do not cause mispredictions. When this happens, the APF
cycles are distributed amongst more H2P branches, decreasing
the per-branch benefit without improving coverage as much.
The H2P Table parameters need to be tuned to balance this
tradeoff. We use two metrics described in past work [20] to
measure the effectiveness of the H2P Table:

• Specificity: the percentage of all mispredicted branches
classified as H2P.

• Predictive value of a negative test (PVN): the probability
that a branch marked as H2P is mispredicted.

Specificity measures the misprediction coverage. A higher
value of specificity means more mispredicted branches are

Coverage (Specificity) Wastage (1-PVN)
H2P Table 95.43% 89.61%

TAGE confidence 56.33% 74.52%

TABLE II
MISPREDICTIONS DETECTED BY H2P TABLE AND TAGE CONFIDENCE

marked as H2P. Higher coverage leads to better performance
as more mispredictions can potentially be addressed by APF.
PVN measures how efficient the H2P table is. A higher
value of PVN indicates that fewer branches were marked as
H2P even though they are correctly predicted. We use the
inverted value of PVN (1-PVN) as this is directly correlated
to the amount of wasted work that APF does: the higher this
number, the more cycles APF spends on branches that are not
mispredictions. Table II shows these metrics for the H2P Table.
The H2P Table provides good coverage but ends up doing a lot
of wasted work at the same time. While APF is designed for
coverage and works well with just the H2P Table, we can get
better performance by combining it with TAGE confidence.

2) Using TAGE confidence: A useful optimization we
discovered was to use TAGE confidence in addition to the
H2P Table to decide which branches to pick for APF. TAGE
provides three confidence levels based on whether the counter
used for prediction is saturated. A prediction from an unsat-
urated counter is classified as a low-confidence prediction.
The TAGE confidence mechanism does a worse job than the
H2P Table at covering all mispredictions, as shown in Table
II. However, it marks far fewer branches as low confidence
leading to less wasted work. The counters used by TAGE
confidence are stored in internal TAGE tables that are indexed
using the PC and branch history. Thus, it operates on a per-
path basis compared to the H2P Table which operates on just
a per-PC basis. This allows TAGE confidence to filter out
H2P branches that predict correctly only under specific history
patterns. Moreover, TAGE counters are only 3 bits wide which
allows them to saturate very quickly in one direction (taken or
not taken) if a branch behaves consistently under a fixed con-
trol flow. TAGE confidence thus captures short-term changes in
branch behavior more accurately. On the other hand, the H2P
Table counters are decremented once every 20k instructions.
This means that branches with a high long-term MPKI saturate
the H2P Table counters and it captures static branches that
may have bursts of correct predictions but an overall high
MPKI. The H2P Table and TAGE confidence thus complement
each other as seen from the coverage and wastage numbers in
Table-II. The H2P Table can be tuned to provide high coverage
and TAGE confidence can be used to preferentially select low
confidence branches for APF. APF with only the H2P table
provides a 3.3% performance improvement, but this number
rises to 5% when TAGE confidence is used in conjunction.

E. APF Pipeline
The overall operation of the APF pipeline proceeds as

follows. During Branch Prediction, the branch PC is sent to
the H2P Table. The in-flight branch queue, which keeps track
of the information about all branches currently in the pipeline
is augmented with two additional bits: one to indicate whether
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it is H2P (which is set by the H2P Table) and one to indicate
whether the TAGE confidence for this branch was low. A 3-
bit ID is also added which indicates whether APF has been
performed for that branch and the location of the buffer in
which the alternate path instructions for that branch are stored.

APF keeps track of the oldest unresolved branch marked
by the H2P table and the oldest unresolved branch marked by
the TAGE confidence in the in-flight branch queue. The one
marked by TAGE confidence is picked first for APF. If no
low-confidence branch is present, then the oldest H2P branch
is picked.

Once a branch is picked, the APF pipeline is initialized
by setting the alternate path PC to either the next PC or the
branch target depending on the prediction. The speculative
branch history register for the main pipeline is copied over
with the inverted prediction pushed into the history. The APF
pipeline can then begin fetching alternate path instructions at
this PC. Note that the in-flight branch queue can be scanned
while the APF pipeline is processing the current H2P branch
so that APF for the next branch can begin immediately after
the APF pipeline is free.

The APF pipeline contains a shadow PC register, a shadow
branch history register, and a shadow in-flight branch queue
(that can hold up to 20 branches). These track the control flow
of the alternate path currently active on the APF pipeline.
The branch confidence mechanism also sets the H2P and
low confidence bits for branches on the alternate path in the
shadow in-flight branch queue.

F. Alternate Path Buffers
Instructions enter the Alternate Path Buffers after the last

stage of the APF pipeline. These buffers store all the informa-
tion associated with an alternate path: instructions that have
been processed by the APF pipeline, the PC and branch history
at the end of the alternate path, and the contents of the shadow
in-flight branch queue for that path. Each Alternate Path Buffer
has a capacity of 104 uops (8 per cycle for an APF pipeline
depth of 13 stages).

G. Branch Resolution and Misprediction
When an H2P branch is resolved and correctly predicted,

we look at its in-flight branch queue entry to check whether
an Alternate Path Buffer has been assigned to this branch. If
so, it is cleared. If the alternate path of the branch is currently
being processed, then the APF pipeline is cleared.

If the H2P branch is mispredicted, we initiate misprediction
recovery. If no Alternate Path Buffer entry (or in-progress
instructions in the APF pipeline) is present for this branch,
misprediction recovery proceeds normally. If an entry is
present (as indicated by the ID in the in-flight branch queue),
we fast-forward to the end of alternate path instructions. This
is done by overwriting the Branch History Register and the PC
register of the main pipeline with history and PC saved in the
Alternate Path Buffer entry. The contents of the saved shadow
in-flight branch queue are also copied over. The alternate path
instructions for the mispredicted branch may be present in

the APF pipeline or the buffers. A 5-1 MUX decides which
alternate path should be restored. The saved instructions are
then moved into the main pipeline by feeding them cycle-
by-cycle into the main pipeline register after the last APF
stage (dependency check). A 2-1 MUX decides whether to
load this pipeline register from the Alternate Path Buffers or
the previous main pipeline stage. This is shown in Fig.5.

The rest of the misprediction recovery operations (flushing
the backend, restoring the RAT, etc.) are the same. Since
the fast-forwarding involves simple data movement, it can be
done in parallel with the rest of the misprediction recovery
operations. Note after being moved to the main pipeline, we
may need to wait for the state of the RAT to be restored if the
RAT has not been checkpointed for that branch. This rarely
occurs since most processors checkpoint the state of the RAT
for H2P branches, which are also the branches we target.

APF stops on indirect branches other than Returns as we do
not bank the indirect branch predictor. APF handles Returns
via a 4-entry shadow Return Address Stack (RAS) that stores
the addresses of Calls made on the alternate path. The shadow
RAS entries are also saved in the buffers and added back to
the main RAS if the alternate path turns out to be correct.

H. Critical Path Analysis
Fig.5 (on page 5) shows the additional MUXes added by

APF to the pipeline stages. The path from the APF pipeline
(or the alternate path buffers) to the main pipeline only goes
through two MUXes and does not impact the overall critical
path. The other input of the 2-1 MUX comes from the
dependency-checking logic in the main pipeline. This adds
1 to 1.5 gate delays to this path, assuming a skewed design
is adopted for the 2-1 MUX. This stage is normally not the
critical path and potentially has enough slack to accommodate
the MUX. The logic within nearby pipeline stages can also
be reshuffled to ensure enough slack is available without
impacting the critical path.

In the unlikely scenario that enough slack cannot be found
for the additional gate delays, we can shorten the APF pipeline
so that the MUX is moved to a prior stage where slack is
available for slightly reduced performance. Alternatively, the
pipeline stage can be split into two so that the critical path is
not affected. In either case, APF’s performance improvement
decreases to 4.0% at worst.

I. Discussion on Hardware Overhead
APF Pipeline Stages The APF pipeline consists of Fetch,

Decode, and Pre-Rename stages. This overhead is lower than
that of implementing a true 16-wide OoO core as that would
require more logic for the Rename and Allocation stages as
discussed in Section I. Moreover, replicating pipeline stages is
much cheaper than replicating storage structures like caches as
the area overhead for logic is considerably lower. According
to McPAT [27], the APF pipeline stages take ∼2% of the
core area, with decode contributing to (∼1.6%). A 16-wide
OoO core with additional allocation and execution bandwidth
requires ∼20% more area. Implementing DPIP requires adding
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shadow RAT, free list, ROB, LQ, and SQ in addition, leading
to an ∼8% area overhead.

Other APF structures The Fetch Queue for the APF
pipeline has 16 entries and takes up to 80B. The Alternate
Path Buffers require 3.2KB of storage (∼800 bytes per buffer).
Using four 16KB TAGE-SC-Ls storage-wise is the same as a
larger TAGE-SC-L but adds some additional logic for folding
the alternate path history register.

Energy Overhead The Fetch, Decode, and Dependency-
Checking stages account for most of the additional power
consumption of the APF pipeline (at most 10% of the core
power according to McPAT). This excludes the BP, BTB, and
I-cache as they are banked. The APF pipeline is active on
average for 65% total execution time. APF also decreases the
total static energy due to reduced execution time (∼5%).

VI. EVALUATION

A. Methodology

To evaluate APF, we augment Scarab [8], an execution-
driven cycle-accurate x86-64 simulator to implement APF
and use Ramulator [24] to model main memory. Scarab
supports wrong path execution which is essential for accurately
modelling Alternate Path Fetch. The system details for the
baseline OoO core and additional structures are listed in Table
III. The baseline core parameters model an aggressive 8-wide
OoO core with a deep backend, similar to many industry
products [2], [3], [5]. We use a large TLB and perfect memory
disambiguation as they do not affect the relative performance
improvement of APF much in our benchmarks. The baseline
does not have a banked BP. All results are relative to this
baseline core configuration.

Core 3.2GHz, 8-wide issue, TAGE-SC-L Predictor [37]
512 Entry ROB, 256 Entry Reservation Station, 16-wide retire

15-cycle frontend latency, Decoupled BP
192 entry load queue, 128 entry store queue

Execution Ports 6 ALU (3 can handle BRs, 3 can handle FP), 3 Load, 3 Store
Predictors TAGE-SC-L for condition branches

History-based indirect branch predictor, RAS
Caches 32KB 8-way L1 I-cache (4-cycle access)

48KB 12-way D-cache (4-cycle access)
1MB 16-way LLC cache (18-cycle access), 64B lines

Memory DDR4 2400R: 1 rank, 2 channels
4 bank groups and 4 banks per channel

tRP-tCL-tRCD: 16-16-16
Alternate H2P Table: 128-entry, 0.1KB, 1-cycle access

Path Fetch Alternate Path Buffers (3.2KB), 4 Buffers
APF Pipeline BP, BTB, and I-Cache banking,

13-cycle latency Fetch and Decode Stages
Dependency check logic (Pre-Rename)

TABLE III
FRONTEND PARAMETERS

B. Benchmarks

We use the SPEC CPU2017 Integer benchmarks [9] with the
ref input sets and the GAP benchmarks suite [14] with inputs
g=19 and n=300 in our evaluation. We use the SimPoints [39]
methodology to generate up to 5 Simpoints per benchmark,
with 200 million instructions per Simpoint, and use a warmup
period of 200 million instructions.

Fig. 8. Performance gains of Alternate Path Fetch

C. Performance Analysis
APF provides a geomean 5% speedup over an 8-wide

baseline OoO core with no BP banking (Fig.8). Most bench-
marks with a high branch MPKI (Fig.2) show substantial
performance gains. However, the performance gains for tc
and bc are relatively lower due to many conflicts on the
banked BP (Table IV). bc is also less sensitive to branch
mispredictions as they overlap with D-cache misses in this
benchmark. perlbench and xalanbmk do poorly since they have
fewer conditional branch mispredictions. x264 does not have
as many mispredictions but the coverage on this benchmark
is good, which is reflected in its slightly better performance.
On the other hand, even though omnetpp and pr have many
mispredicted branches, these mispredictions are not always on
the critical path of the program.

The DPIP configuration in Fig.8 uses time-sharing. The
fetch cycles are shared with a 1:1 ratio between the predicted
and alternate paths as this provided the best performance in
our experiments. DPIP can keep track of the context (RAT and
Free List state) of one extra branch on the predicted path and
one on the alternate path but is limited to fetching from one
alternate path at a time.

DPIP performs well on the benchmarks with a very high
branch MPKI. However, due to its lower misprediction cov-
erage, it is unable to extract much benefit from the rest of
the benchmarks. gcc, deepsjeng and bc drop in performance
because useful fetch cycles are taken away from the predicted
path and spent on alternate path instructions that do not pro-
vide much value. Note that exchange2 is the only benchmark
that does a little better with DPIP as it suffers significantly
due to TAGE banking (Fig.7) in APF.

D. Depth of the APF pipeline
As explained in Section III, the depth of the APF pipeline

determines the coverage and per-branch benefits that APF can
provide. We simulated 6 configurations to analyze the impact
of alternate path pipeline depth on performance and mispre-
diction coverage. The first four configurations all implement
APF as described but with different pipeline depths: 3-stages
(only Branch Prediction), 7-stages (till the end of Fetch), 11-
stages (including Decode), and 13-stages (till Pre-Rename).
The depth of the baseline frontend is not changed. The shorter
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Fig. 9. Impact of changing the alternate path pipeline latency on performance

configurations have fewer APF pipeline stages and a lower
area overhead. The last two configurations: 15-stages (till the
end of Rename) and 17-stages (before Scheduling) model
DPIP with Parallel-Fetch instead of time-sharing. The fetching
mechanism for all configurations is the same, and H2P Table
parameters were tuned to best suit each configuration.

Performance improves for deeper APF pipelines, going
from 3 to 13 stages (Fig.9). Transitioning beyond 13 stages
(past RAT access) reduces misprediction coverage signifi-
cantly resulting in a steep drop in performance. After this,
having a deeper pipeline with DPIP provides slightly better
performance. These observations are all in line with the
reasoning presented in Section IV. DPIP performs much better
in these configurations compared to Fig.8 as it fetches more
alternate path instructions with Parallel-Fetch and does not
incur performance degradation due to time-sharing fetch cycles
(3.2% vs 1.6%). An interesting point of comparison is that
the performance of the best possible DPIP configuration is
equivalent to that of the 7-stage APF pipeline. However,
the area costs of the two are vastly different. The DPIP
configuration needs to replicate all the frontend stages and
backend structures to achieve this performance. The 7-stage
APF configuration on the other hand only requires a duplicate
Fetch Queue (for branch prediction) and Fetch unit.

Solutions like [4], [15], [19], [36] can only save up to 1-2
cycles of misprediction penalty (for most branches) and only
provide a ∼1% performance improvement.

Fig.10 shows the misprediction coverage for the 6 configu-
rations. Each category indicates what percentage of conditional
branch mispredictions fall under that category. A small per-
centage of mispredictions in the first four configurations come
from branches not marked as H2P. This is due to the warmup
period for H2P Table counters and capacity constraints.

The rest of the categories indicate how many cycles of
misprediction penalty were saved for a branch marked as H2P.
10%-30% of the branches show no improvements (0 cycles)
as these branches were resolved while the APF pipeline was
busy. This percentage increases with a deeper pipeline as the
first few branches tend to starve out the rest.

The shallower APF pipelines have higher coverage, but each

Fig. 10. Percentage of branch mispredictions categorized by how much
pipeline re-fill penalty is saved for different configurations

branch that is improved only provides a small benefit. As the
pipeline depth increases, the percentage of branches that show
any benefit decreases from nearly 80% to around 65% for the
APF configurations. However, a large chunk of the benefit
comes from higher per-branch savings which results in better
performance for the deeper APF pipelines.

At the transition between 13 and 15 stages, misprediction
coverage drops drastically due to fewer branches being marked
as H2P for DPIP. APF is thus at the sweep spot of this trade-
off as it provides the best possible per-branch benefit without
significantly losing out on coverage.

E. Fetch Schemes

There are three possible configurations for fetching instruc-
tions in APF: time-sharing, Parallel-Fetch via banking the
frontend structures, or having two read ports to the frontend
structures. Time-sharing is the cheapest alternative as it does
not require the Fetch, Decode, and Pre-Rename stages to be
duplicated, but also provides the least performance (Fig.11).
For APF, the best ratio for sharing fetch cycles was 3:1, with
3 cycles for the predicted path. However xalanbmk and bc
show a slight performance decrease even with the skewed
distribution as the benefits of APF cannot make up for the
lost cycles on the predicted path. Time-sharing provides more
benefits with a decoupled BP as the prediction queues can
partially absorb the impact of reduced prediction cycles. This
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Benchmarks perlbench gcc mcf omnettpp xalanbmk x264 deepsjeng leela
Bank conflicts 9.39% 10.45% 8.3% 6.11% 12.37% 12.23% 11.89% 11.13%
Benchmarks exchange2 xz bfs sssp pr cc bc tc

Bank conflicts 12.38% 6.47% 22.69% 8.39% 10% 11.84% 4.34% 44.42%
TABLE IV

PERCENTAGE OF ALTERNATE PATH FETCH CYCLES SPENT IN BANK CONFLICTS

Fig. 11. APF with various Fetch Schemes

Fig. 12. (a) Sweeping the number of Alternate Path Buffers (b) Changing
the baseline OoO pipeline depth. The number in the parenthesis indicates the
depth of the baseline frontend and the APF pipeline

is why time-sharing shows some performance improvements
across most of the benchmarks. The banked frontend provides
better performance and does not require significantly more
hardware. The only exception to this is exchange2 which
suffers mainly due to the lower baseline MPKI associated
with banking the predictor (Fig.7). An extra port on the other
hand improves performance but requires significantly more
area and affects timing. Given these trade-offs, the Parallel-
Fetch scheme via banking strikes the best balance between
performance and area.

The hashing scheme we chose for banking utilizes the
lower bits of the PC. This reduces bank conflicts significantly
compared to using random bits to uniformly distribute entries
across the banks (as explained in Section V-B). The percentage
of bank conflicts (shown in Table-IV) is well below 25%
for most benchmarks. bfs and tc are outliers as our hashing
scheme does not work well for certain loop patterns. Thus,
these benchmarks show the biggest disparity in performance
between the banked and two-port configurations.

F. Alternate Path Buffers
The Alternate Path Buffers allow fetching down the alternate

paths for multiple H2P branches simultaneously but provide
diminishing returns as the number of buffers increases. Having
even one buffer helps significantly (Fig.12-(a)) as an active

Alternate Path Buffer entry is freed when the corresponding
branch is resolved. Most benchmarks do not have a large
number of outstanding H2P branches as they often resolve
quickly, and therefore having a small number of buffers
captures most of the benefits.

G. Effect of Frontend Latency on Performance
The latency of the baseline OoO core changes how much

branch mispredictions hurt performance. We evaluated how
APF performs on various baseline OoO core configurations,
as summarized in Fig.12-(b). A deeper pipeline has a larger
re-fill penalty and shows greater performance benefits with
APF. A shorter frontend decreases the benefit of APF. For
shorter pipelines, the reduced per-branch benefit is partly
compensated for by an increase in coverage. Uop caches can
reduce Decode latency by up to 3 cycles, but APF still provides
a 4.4% performance improvement with them as seen in the
Base(12) configuration in Fig.12-(b). Some processors [1], [7]
have a 15-cycle frontend latency even with a Uop Cache hit.
Similarly, Elastic Fetch decreases the prediction latency by 1-
2 cycles on a misprediction. This can also be modeled with
a shorter frontend and APF still provides 4.7% performance
on top of this. Branch Prediction, Fetch, and Rename logic
dominate frontend latency, and these are only likely to increase
as frequency and pipeline width are scaled up.

VII. CONCLUSION

Branch mispredictions are still a cause for concern for
single-thread performance. Both frequent mispredictions and
branch prediction bandwidth limit the effectiveness of a wider
frontend. Alternate Path Fetch provides a simple solution to
this problem that works for any conditional direct branches:
predict and fetch instructions on the alternate path for H2P
branches using a separate pipeline that operates in parallel
with the existing frontend. This makes effective use of a wider
fetch by re-filling alternate path instructions into the main
frontend if an H2P branch is found to be mispredicted. We
introduce a simple banking scheme for TAGE-SC-L which
allows two control flow paths to access the Branch Predictor
in parallel without the overhead of an additional port. Alternate
Path Fetch provides a 5% improvement over an 8-wide OoO
core, compared to the 2.8% speedup that building a true 16-
wide OoO core provides and has much lower area and energy
overhead.

ACKNOWLEDGMENT

We thank the anonymous reviewers and the members of the
HPS Research Group for their feedback and help in improving
this paper. We also thank Apple, Intel, Arm, and NSF grant
#2011145 for their financial support.

1227



REFERENCES

[1] “AMD Zen2 measurements,” https://www.7-cpu.com/cpu/Zen2.html.
[2] “AMD Zen4 microarchitecture,” https://www.anandtech.com/show/

17585/amd-zen-4-ryzen-9-7950x-and-ryzen-5-7600x-review-retaking-
the-high-end/8.

[3] “Apple M1 microarchitecture,” https://www.anandtech.com/show/
16226/apple-silicon-m1-a14-deep-dive/2.

[4] “IBM System 370 Function Characteristics,” https://bitsavers.org/pdf/
ibm/370/funcChar/GA22-6935-0 370-165 funcChar Jun70.pdf.

[5] “Intel Goldencove microarchitecture,” https://www.anandtech.com/
show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3.

[6] “Intel Gracemont microarchitecture,” https://www.anandtech.com/show/
16881/a-deep-dive-into-intels-alder-lake-microarchitectures/4.

[7] “Intel Icelake measurements,” https://www.7-cpu.com/cpu/Ice Lake.
html.

[8] “Scarab,” https://github.com/hpsresearchgroup/scarab.
[9] “The standard performance evaluation corporation (spec),” 1997.

[Online]. Available: https://www.spec.org/
[10] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of

control dependence to data dependence,” in Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’83, 1983, p. 177–189. [Online]. Available:
https://doi.org/10.1145/567067.567085
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