Timely, Efficient, and Accurate
Branch Precomputation

Aniket Deshmukh, Chester Cai, Yale Patt
HPS Research Group

* Branch mispredictions still limit single-thread performance

* Most of these mispredictions come from a small set of problematic
branches referred to as “hard-to-predict” (H2P) branches

* Building extremely large predictors or using state-of-the-art neural
networks at best reduces a third of the mispredictions

* Alternative: Branch Precomputation

* Been around for over 25 years
* |dentify H2P branches and instructions in their dependence chains

* Use the chains to compute H2P branch directions faster than the main
thread

 |f the precomputation result arrives by the time the corresponding
branch is fetched, it is used to override the branch predictor

Branch Precomputation: Prior Work

Key considerations:
accuracy coverage timeliness

Compiler techniques Runtime solutions

e Create a perfectly accurate but e Create light-weight dependence
heavy-weight helper thread chains for specific types of control

e Good coverage (>70%) flows

e Poor timeliness: <20% of e Good timeliness: ~70% of
precomputation results arrive in- precomputation results are timely
time to override the prediction e Poor coverage (~30%)

Thus, the tradeoff between coverage and timeliness severely limits performance

A Timely, Efficient, and Accurate i
Precomputation Thread ,

We use precomputation results that arrive after the branch is fetched but

before it is executed to issue early pipeline flushes

e Enabled by synchronized timestamps provided the thread construction
mechanism

Mechanism for generating highly accurate dependence chains (>99.3%) at
runtime for H2P branches

e Improves misprediction coverage without hurting timeliness, traces longer
chains

Our precomputation thread can efficiently execute on-core without delaying
the main thread significantly

The TEA thread provides a 10.1% performance improvement over a set of SPEC CPU2017
and GAP benchmarks

ldentifying H2P Branch Chains

Retired instructions

gi::: A | mov T4, [r5+r6] | Block Cache e After retirementinstructions are
and r6, #1 -| TAG Uops collected into a Fill Buffer
jne B PC (Ag) Ag
Basic l FC (Bo) B0 * |dentify frequently mispredicting
1 7 .
Block B | add r4, #64 PC(Co)| Co C22 C23 branches via the H2P Table
jnz C]
! * Dependence chain instructions
2;::: o | mov z0, [z4] are traced via a Backward
Dataflow Walk starting at these
- 24 instructions branches
cmp r0, #0
jne skip

Key idea: use the control flow sequence generated by the main branch predictor to stitch

together block cache entries and re-construct the dependence chain at fetch time

Constructing the TEA thread

Branch predictor generates

Basic Block Cache
mov r4d, [r5+r6
Block A [: the fetch address
and r6, #1 TAG Uops
BC (Ag) 20 sequence:
PC(Bq) Bp A (3)’ B (2)’ C (24)
B - Y
Bf;iﬁ B | add r4, #64 PC(Co) | Co C22 Ca3 Main Thread TEA Thread
Gnzc] Ay A; A, A,
By B4 B,
Basic Co ... Co Cory C
Block C mov r0, [rd] 0 0 C22 Ca3
Cy; Cy3
cmp r0, #0
jne skip

* Both threads inherit the same branch IDs from the branch predictor

* |ntermediate branches that are not hard-to-predict need not be precomputed

Implementation Overview

8-wide TEA thread frontend
[Block] Shadow

Cache RAT Issue ports
shared with
> Fetch Rename priority given § b
to TEA thread H2P Table
+ Fill Buffer,
Bra.nc'h » Fetch Decode Rename Reser_vatmn Execute Retire
Prediction Stations
8-wide main thread frontend Reservation Stations and Physical
Registers are partitioned
1. Faster fetch 2. Prioritized scheduling o e el St?u,s’ due to.non-
dependence chain instructions

Longer dependence chains improve timeliness as it allows the TEA thread to begin earlier

Thank you

Aniket Deshmukh, Chester Cai, Yale Patt
HPS Research Group

Performance Improvement

] L

1 L

] [

] L

] [

] L

B

| [

[L

] [

_ [

] [

] L

| _

_ [

] [

] L

B B

I [

888822w° gggee s
DIdIN Yydueld (e8ejuaouad)

auneseg

Juswanoldw|
9ouewolad

ldentifying H2P Branch

Basic
Block B

Basic
= 5+reé6
Block A mov r4,[r5+ré]
and r6, #1
jne C
4 ¥
Basic
add r4, #e4
? Block C
jz E
jne F
|
Y
Basic mov re,[ra]
Block D
cmp ro, #09
jne skip

!

Chains

Fill Buffer

mov r4,[r5+ré]

and r6, #1

jne C

add r4, #e4

jz E

mov re,[r4]

cmp ro, #0

jne skip

Block Cache

TAG Uops
PC(Ag) Ao
PC(Bp) Bo
PC(Dp) Dg D1 D2

Backward Dataflow
Walk

youngest
instruction
10

