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DRAM-Aware Last-Level Cache Replacement

Abstract

The cost of last-level cache misses and evictions depenifisigntly on three major performance-related character-
istics of DRAM-based main memory systems: bank-levellpéismh, row buffer locality, and write-caused interferenc
Bank-level parallelism and row buffer locality introduckferent latency costs for the processor to service misgas:
allel or serial, fast or slow. Write-caused interferencenazause writebacks of dirty cache lines to delay the senice o
subsequent reads and other writes, making the cost of ati@vitifferent for different cache lines.

This paper makes a case for DRAM-aware last-level cachegdesiVe show that designing the last-level-cache
replacement policy to be aware of major DRAM charactersstian significantly enhance entire system performance. We
show that evicting cache lines that minimize the cost ofesissid write-caused interference significantly outperfrm
conventional DRAM-unaware replacement policies on batlylsicore and multi-core systems, by 11.4% and 12.3%
respectively.

1. Introduction

Main memory performance is crucial to high performance opcocessors since resource-limited on-chip
caches cannot always store all the data necessary for gapiplications. Therefore, it is very important to
understand the main memory system characteristics (6RANDcharacteristics in today’s systems) to design
high performance microprocessors. In this paper, we makesa for DRAM-aware last-level cache design:
we show that designing last-level cache replacement ptide aware of major DRAM characteristics can
significantly enhance entire system performance by minirgithe performance impact of cache misses and
writebacks. We consider three major performance-relatedacteristics of modern DRAM systems that can
significantly influence the memory system performance of enogprocessors: bank-level parallelism, row
buffer locality, and write-caused interference.

First, a DRAM chip consists of multiple banks that can be ased independently. Memory requests
to different banks can receive service concurrently. Thionoof servicing multiple requests in parallel in
different DRAM banks is called DRANBank-Level Parallelism (BLP)

Second, data in a DRAM bank can only be accessed from the emk’bufferwhich essentially serves
as a buffer for the last accessed memory row in that bank. efulent accesses to the same row can be
performed by simply accessing the row buffer, which redubedatency of the memory access compared to
when actually accessing the DRAM cells. This concept isrefkto asow buffer locality

Third, write requests interfere with read requests in mnde@RAM systems, causing idle cycles on the
DRAM data bus. Once a write is serviced, subsequent reads\ardsome writes (e.g., writes to different
rows in the same bank) cannot be started for a certain time &fter the write is fully serviced [3]. We call
this write-caused interference

Due to DRAM BLP and row buffer locality, different outstandilast-level cache misses may not have
the same cost from the processor’s point of view. BLP alldweslatencies of multiple requests to different
banks to overlap, and therefore the processor does notierpereach request’s memory latency serially. As
a result, a request that is serviced concurrently with retguie other banks is less costly than a request that

is serviced alone, i.e., with no request in any other bankv Baffer locality allows requests to the same row
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in a bank to be serviced faster. In contrast, the latency @gaest that does not “hit” in the row buffer is
significantly longer.

Additionally, the eviction of all cache lines does not inthe same cost because of write-caused inter-
ference. When a dirty line is evicted by a replacement pplicg modified data must be written back to
the DRAM system. The generated write request interferel vaad requests that are more critical to the
processor’s forward progress. As such, interfering wrédquests should be serviced as quickly as possible
to reduce this write-caused interference. Depending oratitzesses of outstanding writes, writes can be
serviced quickly or very slowly. For instance, multiple tes to the same row in the same bank are serviced
very fast (due to row buffer locality), whereas multiple t@s to different rows in the same bank are serviced
very slowly because they conflict with each other in the rodfdsu As a result, to service writes quickly,
generating writes to the same row successively is preferabl

Our Observation: As described above, due to DRAM characteristics, not alsegsand evictions of the
last-level cache incur the same cost. Therefore, it is itgmbifor a last-level cache replacement policy to take
into account these DRAM characteristics when it makes ogpieent decisions. However, many previous last-
level cache studies mainly focus on deciding which datadmesh order to minimize the number of off-chip
accesses, solely based on future reuse [1, 16, 2]. A recplaicement policy proposal tries to increase the
clustering of last-level cache misses with the hope that Wi# be serviced in parallel so that the processor
does not experience each request's memory latency sefal]y but it does not consider DRAM banks or
row buffers. In fact, no previous cache replacement poligylieitly considers the main memory system’s
characteristics/state to improve overall system perforcea

Our goal in this paper is to design DRAM-aware last-leveheaeplacement policies that aim to minimize
the cost of misses and evictions by taking DRAM performar@acteristics into account. We propose two
policies that work synergistically. The first is a DRAM latgnand parallelism-aware replacement policy.
The key idea is to favor the eviction of cache lines that wheefetched will be serviced quickly or in parallel
with other misses in the DRAM system. The second is a DRAMeninterference-aware replacement policy.
It evicts dirty cache lines that can be written back fast s Writes to DRAM do not interfere with DRAM
reads for long periods. Our evaluation shows that the coatianin of our two policies significantly improves
system performance by 11.4% and 12.3% on single and 4-cetersg respectively.

Contributions To our knowledge, this is the first paper that proposes stticache replacement polices
that take into account the characteristics of state-ofati®RAM systems. We make the following contribu-
tions:

1. We propose a new cache replacement policy that favorsvibgam of cache lines that can be brought
into the cache quickly with low performance impact in theufet (if needed again) because they are likely to

hit in a row buffer or likely to be serviced in parallel withhatr misses accessing different DRAM banks.
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2. We propose a new cache replacement policy that favorsimyidirty lines that can be written back to
DRAM efficiently by writing to the same row buffer as other standing write requests.

3. For both single-core and multi-core systems, we showeheah of the proposed policies significantly
improves system performance and that the two mechanismssyoergistically. We compare our proposal to
the state-of-the-art MLP-aware cache replacement pdhayis unaware of DRAM state/characteristics and
find that our techniques provide significantly higher pariance due to comprehensive awareness of DRAM

characteristics.

2. Background: DRAM Characteristics

In this section, we briefly discuss three DRAM characterssbased on the Double Data Rate 3 (DDR3)
SDRAM JEDEC standard. We refer readers to the DDR standardrdentations and product datasheets [3,
11] for further information. Note that we accurately modklthese performance-related timing constraints

in our DRAM model for the evaluations described in Section 4.
2.1. Row Buffer Locality

Each DRAM bank is arranged in rows and columns of DRAM cellse $ize of a row is several Kbytes (1
~ 2 Kbytes in each bank per DRAM chip) in modern DRAM systemspé&dorm a complete access to a data
element, three steps are required. First, a precharge cathimaent to precharge the bank’s bitlines. Second,
an activate command is sent to open the source/destinatiothrough the sense amplifier (row buffer) in the
bank. Finally, a read or write command is scheduled to adtesappropriate column from the row data in
the row buffer. Every access can be performed only by reaflomg or writing into the row buffer. Therefore,
if a subsequent access to the bank is mapped to a differentirege three steps (i.e., precharge, activate, and
read/write) must be performed again. We call such an access eonflict On the other hand, a subsequent
access which is to the same row as the previous row can berpedosimply by accessing the appropriate
column from the currently open row. We call such an accessvahit. Since a row hit requires only the third
of the three steps, its DRAM service time is much less thanaha row conflict.

Figure 1 illustrates exactly how the DRAM system works faedl accesses. In Figure 1(a), three reads
(A, B, and C) are waiting for DRAM scheduling. They are all rpad to the same row (Row 1) in Bank O.
Currently Row 5 is open in the row buffer of Bank 0. Read A hagddhrough all three steps since it is a row
conflict. The total service time for Read A is the sum of theiaies for the three steps:p + trep + CL),
as shown in Figure 1(b). After this latency, the data requing Read A is put onto the data bus. The DDR3
DRAM'’s prefetch buffeallows to enable a burst mode of up to eight (burst length,= 8) by bringing (eight)
consecutive columns from the row buffer to the prefetchdauffherefore eight bursts of data are sent to the
data bus. The subsequent two reads can simply access thepemedby Read A. Even though accessing

a given column within a row takes only column address stralbenky (' L), consecutive row-hit reads are
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serviced even faster. This is because the DDR3 system attowhit latencies ('Ls) to overlap in order to
support back-to-back data transfers among row-hit reags(among row-hit reads in different banks). Note

that such back-to-back data transfers are supported anoangit writes as well.

Row

oo [Row5] [ Row3] Precharge 0 ACtvale  Read ARead B Read C
....... Bank0__ T _._Bank 1 DRAM Command & (Oﬁl) @1 @101 tRP: Precharge period
Read Al DRAM address bus Y tRCD: Activate-to-read/write delay in the ban
Reaq g controller tRP tRCD CL tBL CL: Read column address strobe (CAS) lateh
Read d CL tBL tBL: Burst length time
tCCD CL tBL | tCCD: CAS-to—CAS delay
DRAM read buffer tCCD

Read A (0, 1): mapped to row 1 in bank 0 Data bus
Read B (0, 1): mapped to row 1 in bank Gsepvice time
Read C (0, 1): mapped to row 1 in bank 0 in bank 0

(a) DRAM state

Read A: Row conflict

Read B: Row hit
(b) DRAM timing

Read C: Row hit

Figure 1. Row conflict and row hit in modern DRAM system

Since row hits can be serviced {39 times) faster than row conflicts, many DRAM controllersopitize
row hits over row conflicts in scheduling decisions [18]. &ke advantage of this, we propose a cache
management policy that takes row buffer locality into agttday evicting cache lines that are likely to be row

hits rather than lines that would be very costly row conflisten they need to be re-fetched later.

2.2. Bank-Level Parallelism (BLP)

A DRAM chip consists of multiple (4~ 8) independent banks and accesses to different banks can be
serviced concurrently. Figure 2 shows the DRAM behaviomad tow conflict accesses to different banks.
Read A is mapped to Row 1 in Bank 0 and the Read B is mapped to Ro®dnk 1 as shown in Figure 2(a).
Even though they are row conflicts (i.e., the current opersrave different from the rows they access), their
DRAM service times can significantly be overlapped as shawhigure 2(b). Therefore the effective stall
time of the processor for these two requests is much lessthigasum of the two access latencies. Note that
if two row conflicts are mapped to the same bank, they are smivcompletely serially and the processor

experiences the sum of two row-conflict accesses.
Activate (1, 1)

blfj?f\gr | Row5 | | Row 3] PrechargeP(r)echarge Lactivate Read ARead B tRP: Precharge period
_______ Bank 9—---T-----Eélplf-l---lj-l?l-AMCommand & AN é 0. 1) 0.1) @1 tRCD: Activate—to-read/write delg
Read A DRAM address bus CL: CAS latency
Read B controller tRP tRCD cL tBL tBL: Burst length time
: tRRD: Activate—to—activate periot
RRD 1RCD in different banks
DRAM read buffer Data bus
Read A (0, 1): mapped to row 1 in bank Ogervice time . Read A: Row conflict Data A Data B
Read B (1, 1): mapped to row 1 in bank 1 in bank 0 ( - )
Service time Read B: Row conflict
(a) DRAM state in bank 1 | =

Overlapped DRAM service time
(b) DRAM timing

Figure 2. DRAM bank-level parallelism

To exploit DRAM BLP, we propose that the cache replacemefityshould favor keeping in the cache

To be precise, the total service time of two consecutive rowflicts in the same bank is more than the sum of two row con-
flict latencies due to other DRAM timing constraints such etivate-to-activate command periotk¢) and activate-to-precharge

command periodt.as).



those lines whose latencies are unlikely to be overlapp#idether concurrent accesses in different banks.

2.3. Write-Caused Interference

Write-caused interference in DRAM comes from read-to-eyritrite-to-read, and write-to-precharge la-
tency penalties. We first describe read-to-write and wioteead latencies.

Read-to-write and write-to-read penalties: Read-to-write latency is the minimum latency from a read
data burst to a write data burst. This latency is requirechenge the data bus I/O pins’ state from read state
to write state. Therefore, during this latency the bus hasetadle. This latency must be satisfied regardless
of whether the read and the write access the same bank orediffeanks. In DDR3 DRAM systems, read-
to-write latency iswo DRAM clock cycles

Write-to-read {yyrr) latency is the minimum latency from a write burst to a sulbssd read command.

In addition to the time required for the I/O state change fnarte to read, this latency also includes the
time required to guarantee that written data in the DRAM&feich buffer can be safely written to the row
buffer (i.e., sense amplifier). Therefarg 1 is much larger (e.gsix DRAM clock cyclesfor DDR3-1600)
than read-to-write latency and introduces more DRAM dats idle cycles. The prefetch buffer is shared
by row buffers in all DRAM banks therefore the modified datahe prefetch buffer must be written back
to the corresponding bank’s row buffer before a read oveesrihe data in the prefetch buffer. As a result,
write-to-read latency must be satisfied regardless of vdrdtie write and the read are to the same bank or
different banks.

Due to read-to-write and write-to-read penalties, switghservice between reads and writes frequently in
the DRAM system results in many idle cycles. This problem bammitigated by a write buffer policy [7].
However a write buffer policy cannot solve the problem coetglly due to the write buffer’s limited size and
the write-to-precharge latency.

Write-to-precharge latency (write recovery timety r) comes into play when a subsequent precharge
command is scheduled to open a different row after a writda@are. This write-to-precharge latency specifies
the minimum latency from a write data burst to a prechargernamd in the same DRAM bank. This latency
is very large {2 DRAM clock cyclesfor DDR3-1600) because the written data in the DRAM's pieiet
buffer must be written back to the corresponding DRAM rowotigh the row buffer before precharging the
DRAM bank. This must be done to avoid the loss of modified data.

Figure 3 illustrates write-to-precharge penalty in a DRA&K. Write A and Read B access different rows
in the same bank (Bank 0). Therefore, after Write A is sejeeprecharge command is required to open the
row for Read B (i.e., row conflict). Subsequent to the schadubf Write A, the precharge command must
wait until write-to-precharge latency is satisfied befdredn be scheduled. Note that this penalty must be
satisfied regardless of whether the subsequent prechangmand is for a read or a write. The resulting idle

bus cycles isywr+trp+trep +CL DRAM clock cycles unless there are other requests that ang lbead
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or written in different banks.

bﬁ%‘é"r [ Row 2 | [ Row 3] Write A Activate Read B
0, 2) Precharge 0 (0, 3) (0, 3) X ;

Bank 0 Bank 1 DRAM Command & A A tRP: F’recharge period _
,,,,,,,,, b address bus U U tRCD: Activate—to-read/write laten

Read B Write A| DRAM CWL BL CL: Read_ CAS latency

controller tWR RP 1RCD cL BL CWL: Write CAS Igtency
tBL: Burst length time
DRAM read buffer DRAM write buffer Data bus HHHH] tWR: Write Recovery time

Write A (0, 2): mapped to row 2 in bank [0 i ~baaB (write—to-precharge)
Read B (0, 3): mapped to row 3 in bank|0 Data bus idle cycles

Scheduling order: Write A, Read B
(a) DRAM state

(b) DRAM timing
Figure 3. Write-to-precharge penalty in DRAM system

Since the write-to-precharge latency must also be satisfied precharge for a subsequent write, row
conflicts among writes degrade DRAM throughput for writesr Example, a write to Row 1 after a write to
Row 3 in the same bank must still satisfy this write-to-prage penalty before the precharge command for
the write to Row 1 can be scheduled. This problem cannot heeddly the DRAM write buffer. If writes
in the write buffer access different rows in the same bang,tttal amount of write-to-precharge penalty
becomes very large. This eventually results in an evengrelaiay in the service of reads, thereby degrading
application performance.

The source of DRAM writes is dirty line evictions from the tdsvel cache. A write-caused interference-
aware dirty line replacement policy can control the mix oftavrequests in the DRAM write buffer so that

writes can be serviced faster. We describe this policy inie@d.2.
3. DRAM-Aware Cache Replacement

Our mechanisms aim to minimize the cost of last-level cactlss@s and evictions of dirty lines by taking
DRAM characteristics into account and evicting the leastlgaache lines from the last-level cache. We pro-
pose two policies: Latency and Parallelism-Aware (LPA)aepment policy and Write-caused Interference-

Aware (WIA) replacement policy. We discuss these two meigmas in the following sections in detail.

3.1. Latency and Parallelism-Aware Replacement

Due to row buffer locality and bank-level parallelism, nétraisses incur the same cost from the proces-
sor’s point of view. The Latency and Parallelism-Aware ()P&placement policy favors evicting cache lines

that are likely to be row hits or exploit BLP when they are lgbtinto the cache again later.

3.1.1. Why Should We Consider DRAM Characteristics?To answer this key question, we describe the
shortcomings of the Memory-Level Parallelism (MLP)-awaaehe replacement policy [17] which are due to
this technique being unaware of DRAM state/charactessii©ie MLP-aware cache replacement policy [17]
assumes that clustered cache misses are lower cost tharegalisses. It makes the implicit assumption that
the service times of all clustered cache misses are ovexthpyith each other. Therefore, this policy prefers
to evict cache lines that are serviced concurrently withepothisses. However, in many cases, concurrent

outstanding misses are not necessarily serviced in phiraltbe DRAM system. When a large number of
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row-conflict misses are outstanding in the memory systeey #re serviced in parallanly if they are to
different DRAM banks. Consider the following example.

Figure 4 describes how the mix of outstanding last-leveheamisses can affect DRAM performance and
processor stall time. Figure 4 (a) shows the initial DRAM aviids Status/Information Holding Register
(MSHR) state. There are four outstanding misses preseheiMiSHRs. Row 1 and Row 2 are open in the
row buffer of Bank 0 and Bank 1 respectively. Four misses aigimg in the DRAM read buffer to be serviced
by DRAM. Figures 4 (b) and (c) demonstrate two scenarios.

Figure 4(b) shows the DRAM service time and processor staten two reads (Reads A and D from
Misses A and D) are row conflicts in Bank 0 and two other read=sa(R B and C) are row hits in Bank 1.
Since the accesses to Bank 1 are row hits (and therefore temdg), their latencies are overlapped with Read
Ain Bank 0 (a row conflict). However, Read D is completely $egd alone. The processor must experience

the sum of the two row-conflict latencies serially.

Row ice ti Read A: Row conflict Read D: Row conflict
buffer DRAM | Read A:row 1 in bank Sﬁ:‘ggﬁélrge X D)
Bank 0 T Bank 1 ) . K I
fffffffffffffffffffffffffffffff Read B: row 2 in bank 1 geryice time Read B: Row hit Read C: Row hit
Read A c?)ﬁt?ohllller Read C:row 2 inbank 1 in bank 1
Read B| Read D: row 5 in bank 0 Stall Stall a Stall
Processor
Read §
Read D Compute Compute Compute

(b

-

DRAM read buffer Example of last-level cache misses that result in undesirable DRAM utilization

Miss A - Service time Read A: Row conflict
Miss B Read A: row 1inbank 0 iy pank 0 - D
- Last-level cache| Read B: row 2 in bank 1 ggpyice time Read B: Row hit Bead C: Row hit Read D: Row conflict
Miss C . ) <
- Read C: row 2 in bank 1 inbank 1
Miss D Read D: row 3 in bank 1L
MSHRs - Processor Stall Stall = Stall

(8) DRAM and MSHR state Compute Compute Compute

(c) Example of last-level cache misses that result in better DRAM utilization

Figure 4. DRAM and processor performance for two different m  ixtures of outstanding misses

On the other hand, Figure 4(c) shows the DRAM service timgmadessor status when Read D is mapped
to Bank 1 instead of Bank 0 and is still a row conflict (otheruests are the same as Figure 4(b)). Read D
still takes a long time since it is a row conflict. However, grsficant portion of its latency is overlapped with
the row-conflict latency of Read A. Therefore this compositdf requests results in a significant reduction of
processor stall time compared to the previous case.

This example signifies that in contrast to what MLP-aware laesms assume, simply having many
misses outstanding in the MSHRs does not necessarily maathtise misses are serviced in parallel. Even
though Read D is outstanding with three other misses in bigtrés 4(b) and (c), its latency is not at all
overlapped in the former case yet significantly overlappethe latter. As such, depending on the mix of
clustered misses, their memory service time (or cost) sagignificantly.

In addition to isolated misses, clustered misses to diftei@vs in the same bank also incur very high cost.
On the other hand, row-hit misses can always be consideved¢dst due to their low latencies regardless
of BLP (recall that multiple row hits’ data is transferredckeo-back as discussed in Section 2.1). Rather

than simply aiming at clustered memory requests, an igtaili cache control mechanism should be aware of
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DRAM characteristics to take advantage of low latency aggh piarallelism in the DRAM system.

Key insight: To minimize miss cost, a DRAM-aware cache replacement paéan control the mix of
requests such that 1) row-hit misses rather than row-comnflisses occur more frequently and 2) row-conflict
misses that can be serviced in parallel rather than serrattye DRAM system happen more frequently. Our

mechanism does exactly this by measuring these chardic®ris

3.1.2. How to Measure DRAM Characteristics Row-hit/row-conflict information can be simply conveyed
using one bit in each request from the DRAM controller to tagtdevel cache. To measure the degree of
BLP quantitatively, we define two BLP metrics: Ajjgregate BLPf an application’s total execution, and 2)
individual BLPof a request that is serviced from Cydleto CycleM. In the definitions that followB L P; is
defined as the number of DRAM banks that are servicing a réquéyclei. > Additionally, BU SY; is set to

one when at least one bank is servicing a request in Gyahel reset when no bank is servicing any requests.

. BLP, M BLP;
2 BLA Individual BLP = 2i=N 2210

A te BLP = =—/—— =N T Y
ggregare >, BUSY, M—N+1

Aggregate BLP indicates how many banks were busy servi@ggests on average while an application
was running. It is greater than or equal to 1 and less thanualeq the total number of DRAM banks. Indi-
vidual BLP of a request indicates how many banks were busyicieg requests in parallel while the request
was being serviced (including the bank servicing that reueNote that these metrics can be measured in
the DRAM controller at runtime since the DRAM controllereddy keeps track of which requests are being

serviced in which bank.

3.1.3. MechanismThe Latency and Parallelism-Aware (LPA) re- DRAM
i

DRAM controller

placement policy leverages the observation that if memequests of

an application show high BLP or row buffer locality in a céntaxecu- 3”;{;@(’)%{5 ’ —t— . i{}é@;’s’{s’ﬁ
tion phase, similar BLP or row buffer behavior will likely ogr in the BLP
. . 3 estimation Row-hit
future. For example, current high BLP requests show high Bitén : p—— estimation
they are refetched later. Previous research [17] also stimtshe mem- ie"s%"rf{aﬁ%sﬁ
i logic Line PC

ory behavior of applications repeats. Therefore LPA assuttmat cache | Low—cost it inserted

lines arelow-costif they show high BLP or row buffer locality when

Last-level cache

they are serviced in the DRAM system. Figure 5 illustrates ltdgic MSHRS

that performs this function.
Figure 5. Low-cost estimation for LPA

LPA evicts cache lines that are predicted as low-cost. Logt-cache

lines are identified by a one-bibw-cost fieldin each line. LPA always prioritizes low-cost lines overdes

2More precisely, a DRAM bank can service multiple row hitstet same time to support back-to-back data transfers assdisdu
in Section 2.1. However, we assume that only the last redsibgting serviced in this case to simplify the metric.
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recently used lines in the set for eviction. If multiple l@ost lines exist, the least recently used (LRU) line

among those is selected as the victim. If there is no low4awstthe LRU line is evicted.

To take into account temporal locality in reused cache |ities low-cost bit of a cache line that is reused
in the cache is reset. This ensures that LPA performs béideritRU replacement for SPEC benchmarks that
work well with LRU replacement. This is because by resettivgglow-cost bit of lines that exhibit reuse, LPA
retains them in the cache. Additionally, the effective meyriatency of misses to low-cost lines that did not

exhibit reuse is significantly reduced by taking advantagew buffer locality and BLP using LPA.

Low-cost estimation using BLP information: To estimate the BLP of a request (or cache line), we need
two pieces of BLP information at runtime: the aggregate BURrd) a predetermined execution interval of the
application and the request’s individual BLP. The DRAM aotier measures this information and sends it to
the estimation logic. Algorithm 1 shows how the low-costrastion works. The estimation logic works only
when the aggregate BLP is greater thafgregate_BL P _threshold. During a high BLP period, the estima-
tion logic marks as low-cost those requests that had mudiehigdividual BLP ¢ggregate_BLP of fset
greater) than the aggregate BLP during that interval.

Starting estimation only when aggregate BLP is high prevesquests from being marked as low-cost dur-
ing low BLP phases where there is no large performance bdrafit BLP. Marking only those requests that
show very high individual BLP compared to the aggregate Bllda the logic to select only those lines for
eviction that are likely to exploit high BLP (i.e., it alloviise logic to distinguish very low-cost lines from oth-

ers). We empirically determined the values fgiyregate_BLP threshold andaggregate_ BLP of fset.

Algorithm 1 Low-cost estimation using BLP information
for eachrow-conflict request whose service is complethal
if aggregate BLP> aggregate_BL P _threshold then
if individual BLP of the request (aggregate BLP +tggregate_BLP_of fset) then
mark the request as low-cost
end if
end if
end for

Low-cost estimation using row-hit/row-conflict information: We observe that some application prop-
erties can effect the row buffer locality demonstrated i@ thicroarchitecture. The insight here is that the
majority of row-hits occur from a few static load instruaim An example is a load instruction that accesses
array data elements in a loop. In fact, we find that only 10cstaiads are responsible for 65% of all row hits
(in the 16 memory intensive SPEC benchmarks shown in Sed)ioAs such, to estimate whether a cache

line is likely to be a row hit, we collect the average row-late of the load instruction that caused the miss.

Algorithm 2 describes how low-cost estimation is perfornbeged on frequent row-hits. We measure the
average row-hit rate of a load using a small table (a 16-ehimay associative cache structure) each entry of

which is associated with a load PC. Each entry keeps trackeofdtal number of requests serviced and the
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total number of row hits for the load. Whenever a requestiigised, the table is looked up with the load’s
PC. If a match is found, its counters are updated as followthelcounter for the total number of requests is
incremented, and 2) if the request was a row hit, the countethe number of row hits is incremented. If no

match is found, the LRU entry is replaced with a new entry andaounters are initialized.

Algorithm 2 Low-cost estimation using row-hit/row-conflict informati
for each request whose service is completed
match found— look up load PC table (request’'s PC)
if match foundhen
(total number of row hits, total number of requests)load PC table (request’s PC)
load PC table (request’s P&} (total number of row hits + (request row hit ? 1 : 0), total n.enbf requests +
1)
adjusted aggregate row hit rate MAX(aggregate row hit rateyggregate_row_hit_rate_min)
if total number of requests request_threshold and row hit rate> adjusted aggregate row hit ratben
Mark the request as low-cost
end if
else
get entry from load PC table (request’s PC)
load PC table (request’s P€)} ((request row hit ? 1 : 0), 1)
end if
end for

Predicting whether a miss is low-cost or not is made usingrtteemation looked up from the load PC table
precisely before updating the table. If no match is found,itaw cache line is estimated as high-cost (i.e., the
low-cost bit is not set). If a match is found, the average toirate for the load is calculated by dividing the
number of row hits by the number of serviced requests. Ptiedics made based on this calculated average
row-hit rate and the aggregate row-hit rate for all requestsiced during the corresponding interval.

A fetched line is only considered for low-cost estimationemtthe row-hit rate information for the corre-
sponding PC is collected for more thaaquest_threshold, not to mark lines for which the corresponding
load has only had a few requests serviced. This preventsigakivrong decision about whether the load will
likely generate many row hits. The logic marks the line as-tmst only if the row-hit rate of the load that
fetched the line is greater than thdjustedaggregate row-hit rate for all fetched lines. The adjustggtegate
row hit rate imposes a minimum value of aggregate row-hie Kaygregate_row_hit_rate_min) to avoid
falsely marking lines as low-cost simply because their totwate, although quite low, is larger than a very

low aggregate row-hit rate. We empirically determined tbed$ parameter values used for our evaluation.

3.2. Write-Caused Interference-Aware Replacement

Not all dirty line evictions for the last-level cache inclietsame cost. This is because row-conflict writes
are much more expensive than row-hit writes as we showedgtidde2.3. The Write-Caused Interference-
Aware (WIA) replacement policy’s goal is to increase comently outstanding row-hit writes. Note that
the source of DRAM writes is the last-level cache’s writdlsd.e., dirty line evictions. A write-caused

interference-aware replacement policy finds and evicty deiche lines that cause row-hit write accesses to
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DRAM. To do this it finds dirty cache lines that are mapped toghme row as outstanding writes in the write
buffer. The resulting row-hit writes can significantly ingwe the service time of the writes. The following

example shows how such a replacement policy can improve DiRANbrmance.

3.2.1. Row-Conflict Writes Are ExpensiveFigure 6(a) shows the initial state of the DRAM read/write
buffers and a set of the last-level cache. A row-hit read (Ri&gand a row-hit write (Write B) are waiting to
be scheduled to DRAM. Two dirty lines (C and D) are at the leastently used (LRU) positions of the shown
last-level cache set. Dirty line C is mapped to a differemt fom Write B whereas Dirty line D is mapped

to the same row as Write B.

Write buffer full

Read A DityC WriteB Activate Write C
bFL\’J(f)f\gl' Less recently used (0, 0) evicted\(o, 0) Precharge 0 ©,1) 0,1)
Bank 0 Bank1l pRrAM . Command___13 ] {} §
. & address bus =
fffffff T,,,,”,,,”,”, Soeee- CIeanA‘ Clean‘ Clean‘ Dirty D L 1BL,
Read A Write B| DRAM H LCWL __tBL
controller Last-level cache tWR tRP tRCD CWL
DRAM read buffer DRAM write buffer Data bus m m
Less recently used ~ baaA DataB o Data ¢
- (b) Cache state and DRAM timing for LRU replacement (Dirty C is evicted) :
.
i i Write buffer full
Clean| Clean] Dirty [ Dirty G Set Less recently used Read A Dirty D Write BWrite D
. o (0, 0) evicted-_ (0, 0) (0, 0)
Last-level cache . Command . § §
Clean A] Clean]| Clean| Dirty C| & address bus
Read A (0, 0): mapped to row 0 in bank 0 s M
Write B (0, 0): mapped to row 0 in bank 0 Last—level cache CwL
Dirty C (0, 1): mapped to row 1 in bank 0 CWL tBL
i . i tCCD
Dirty D (0, 0): mapped to row 0 in bank 0 Data bus m Saved cycles

Data A Data BData D

(a) Cache/DRAM buffer initial state (c) Cache and DRAM timing for write—caused interference—aware policy (Dirty D is evicted)

Figure 6. Conventional vs. write-caused interference-awa  re replacement policies

Figure 6(b) shows the resulting cache state and the DRAMgmihen a conventional LRU policy is used
in the cache. The LRU line (Dirty line C) is evicted by the tedd line for Read A. Therefore a write (Write
C) is generated for Row 1 and is inserted into the write buff@rites are serviced in the order of Writes B
and C. Because Write C accesses a different row from Writ@® @onflict), precharging is required to open
Row 1. Since a write was serviced before, write-to-prechgmgnalty must be satisfied before the precharge
command for Write C is scheduled. This increases the idlesyan the DRAM data bus since the write data
for Write C must wait fortyy g + trp + trep + CW L cycles after the write burst for Write B.

On the other hand, as shown in Figure 6(c), if Dirty D is ewldtestead of Dirty C, the two writes (Writes B
and C) are serviced back-to-back, thereby resulting infsagmt DRAM service time reduction. This example
illustrates that a simple cache replacement policy whidgtigvow-hit writeback requests can improve service

time for writes. Our Write-caused Interference-Aware (Wkaplacement policy is designed to achieve this.

3.2.2. MechanismWIA evicts row-hit dirty lines when a replacement happenthimlast-level cache. Ide-
ally, row-hit dirty lines can be found by comparing the rowdagks of each dirty line in the set (which is
considered for replacement) with the address of every vimithe DRAM write buffer. However, the hard-
ware/design cost of this is not acceptable since it requireassociative search of the write buffer with the

address of each dirty line in the cache set. To simplify immatation and hardware cost, we use a row
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address register for each DRAM bank to keep track of the addyéthe last evicted dirty line mapped to that
bank. In our address mapping, the last-level set index fiellides the DRAM bank index field. Therefore

all lines in a set belong to one DRAM bank. This requires orsoeigtive search: the stored row address in
a register is compared to the address of each dirty line irctohe set. This can be performed by the tag
comparison logic in the cache. The tag comparison strucioalld be modified to support comparing the

stored row address with the row addresses of all lines inghersgure 7 illustrates this.

Writeback Writeback ~ Read Read Whenever a dirty line is evicted (i.e., a writeback is getesiy the
address data address data
i 1 l 1 corresponding DRAM bank’s row address register is updatl thie
: dirty line’s row address. When a replacement happens in hecaet,
Last-level cache Replacemen . . .
ST T T - ogie WIA looks for a dirty line that is mapped to the same row as tst-|
\
Dirty row hit evicted-dirty-line for the corresponding DRAM bank usirg tcompar-

ison logic in the cache. We found that keeping track of theda&ted

Row address fo DRAM bank N-1
. i row address is enough to gain most of the benefits of searthéngpw
Row address for DRAM bank 1 !
Row address for DRAM bank 0 addresses of all writes in the entire write buffer.
| Dirty row hit search logic |
Cache access address WIA prioritizes row-hit dirty lines (if found) over the LRUihe for

_ _ _ eviction. If multiple row-hit dirty lines are found, the LRBmong them
Figure 7. Dirty row-hit search for WIA
is evicted. If none are found, the LRU line is evicted. We fduhat
prioritizing row-hit dirty lines over LRU lines for evictio does not hurt performance due to loss of temporal
locality. This is because 1) very few evicted dirty lines byA\are reused, 2) if the evicted dirty line is
required, the write buffer forwards it to the cache unlessdtready written back, and 3) performance benefits

of evicting row-hit dirty lines outweighs the cost of re-¢atng (a small number of) these lines from DRAM.
3.3. Combining Latency and Parallelism-Aware and Write-Caused Interference-Aware Policies

LPA and WIA can be combined to reduce both miss and dirty lvietien penalties. We found that
prioritizing row-hit dirty lines (detected by WIA) over lowost lines (predicted by LPA) for victim decision
performs very well. The reasons are as follows.

First, LPA alone is unaware of the dirty line eviction cosfPA.can increase write-caused interference if
it evicts dirty lines that cause row conflicts to the same bhdm@cause it only predicts whether or not lines
would be low-cost when they are fetched again later. Secdfid's detection of row-hit dirty lines is more
accurate than LPAs prediction of low-cost read misses.s Thibecause WIA looks for dirty lines that can

be serviced very soon with other currently outstanding egritwhereas LPA predicts low-cost read misses

3This mapping can increase DRAM bank conflicts which in tunasess many row conflicts (among reads and writes with difteren
row addresses). However, a write buffer policy that draimges only when it is full can mitigate this problem signifith. We use
this write buffer policy as presented in Section 4. Also, welfthat only keeping track of the globally last evicted diite’s row
address, disregarding which bank it came from, also workis (486 less improvement than the per-bank based approachis T
option can be used for systems with different address magii.
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that are required in the future. Finally, WIA's penalty ofamg decisions is mitigated by possible forwarding
of such cache lines from the write buffer. However, this poifisy does not exist with LPA. LPA's wrong
decision, evicting a useful and costly cache line, will Kkkave greater negative affect on performance: the

processor must stall for a long time as the cache line nedols tetched from main memory.
3.4. Multi-Core System Considerations

LPA Replacement in Multi-Core: In many chip-multiprocessors (CMP), multiple cores shaeelast-
level cache and main memory resources. When multiple agpits run on different cores, their requests
compete with each other for the shared resources. Ugliolgal BLP and row hit rate (as opposed to per-
application information) for low-cost estimation of LPArcaause system performance degradation. There
are two reasons. First, this can result in unfair replacerdeaisions for applications that show high BLP or
row buffer locality. Cache lines of such an application thaherates many low-cost requests can be unfairly
evicted too frequently, which results in performance ddgten for such an application. Similarly, cache
lines of another application with many high-cost (low roitfate and low BLP) misses could be evicted very
rarely. Second, global BLP is not repeatable when multiplgiaations concurrently run on a CMP system.
This is because it is not guaranteed that the current phaagptitation A that is executed concurrently with
a phase of application B will be executed concurrently whiga $ame phase of application B again later.

To make LPA effective in CMPs, we estimate low-cost lines geacore basis since per-application (or
per-core) memory characteristics do not change significawen on CMP system$.We measure aggregate
BLP/row-hit rate and individual BLP/row hit for each coredgpendently. In the definitions of Section 3.1.2,
BLP; of a core is obtained by considering only the banks that angregthat core’s request3U SY; of a
core is one when at least one request of that core is beingcedrin a bank. Aggregate BLP of a core and
individual BLP of a core’s requests are calculated usingé¢hmodifications. Low-cost estimation for core
As lines is performed using these aggregate BLP and indaliBLP values. In addition, core A's row-hit
rate is measured by dividing the number of core A's row-hijLrests by the total number of core A's requests
serviced in the time interval. Finally, one load PC tablesiguired for each core for low-cost estimation using
row-hit information.

When a cache line is inserted into a cache set, LPA determiags core’s victim by considering only its
lines based on the LPA policy discussed in Section 3.1.3. Agreach of the cores’ victims, LPA chooses to
evict the victim of the core to which the LRU line in the ento&che set belongs.

WIA Replacement in Multi-Core: On the other hand, WIA does not need to be core-aware. This is

“Row buffer locality and BLP of an application’s requests tendestroyed by other applications’ requests in CMP systems
However, we find that due to FR-FCFS (First Ready-First Coimst Berve) scheduling [18], row buffer locality is stillasonably
stable regardless of other concurrently running applicesi Furthermore, if an application’s BLP is not broken byaarently
executing applications, we want the cache replacementypipreserve it. By doing so, FR-FCFS scheduling can sqilat BLP
in the memory requests presented to it by the shared cache.
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because writes are not critical to an application’s progired/rites become critical only when the DRAM
controller cannot service reads due to write-caused ietenice. Therefore, servicing many writes (from
any core) very quickly so that reads (from any core) can beicsd soon and without delay leads to high

performance. As such, the WIA policy in multi-core stays saene as we described for single-core systems.

We evaluate our mechanism using these techniques on a £btffesystem in Section 5.2.

3.5. Comparison to Memory-Level Parallelism-Aware Replaement Policy

Qureshi et al. [17] proposed an MLP-aware cache replacepatial that prioritizes the eviction of a cache
line that is likely to be concurrently serviced with otherssgs when it is fetched next. Any concurrent misses
are assumed to be actually serviced in parallel in the maimong system. This mechanism has multiple
important drawbacks compared to our DRAM-aware policies.

First, the MLP-aware policy is not DRAM bank-aware. As wecdissed in Section 3.1.1, clustered misses
to different rows in the same bank incur very high cost. StheeMLP-aware policy estimates the “MLP cost”
of a cache line using the absolute number of outstandinge®i@s the MSHRS), it assumes that even misses
to the same bank will be serviced in parallel, which is noteci. As such, the MLP-aware policy is prone
to mispredicting the cost of misses significantly. Secone MLP-aware policy does not consider the cost of
writebacks. Instead, it considers only the future miss obsatline when making eviction decisions. This can
hurt performance because it can increase write-causeddrgace in the DRAM system by causing a large
number of row-conflict writebacks. As we showed in Sectiad Band empirically evaluate in Section 5,
row-conflict writebacks degrade system performance siganifly. Third, the hardware/design cost of the
MLP-aware policy is more than our proposal. Since MLP costased in each cache line, multiple bits are

required in each line (3 bits per line). In contrast, our LR4uires only one bit (indicating low-cost) per line.

4. Methodology
4.1. System Model and Metrics

We use a cycle accurate x86 CMP simulator for our evaluatur.simulator faithfully models all microar-
chitectural details such as bank conflicts, port contento buffer/queuing delays. The baseline configura-
tion of processing cores and the memory system for singlelacmte CMP systems is shown in Table 1. Our
simulator also models DDR3 DRAM performance-related tgnionstraints in detail as shown in Table 2.

To measure multi-core system performance, welod&idual Speedup (ISWeighted Speedup (WRDP],
andHarmonic mean of Speedups (HED]. In the equations that followy is the number of cores in the
CMP system. PC#°"¢ is the IPC measured when applicatioruns alone on one core of the CMP system
(other cores are idle, therefore applicatioran utilize all of the shared resources) a(rRCngem” is the IPC

measured when applicatiemuns on one core while other applications are running on theracores.
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4.8 GHz, out of order, 15 (fetch, decode, rename stages}stag

Execution Core decode/retire up to 4 instructions, issue/execute up tocBaimistructions;
256-entry reorder buffer; 32-entry load-store queue; 25sizal registers
Front End Fetch up to 2 branches; 4K-entry BTB;

Hybrid branch predictor: 64K-entry gshare/PAs prediceléctor
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
o Shared last-level cache: 16-way, 8-bank, 15-cycle, 1 vede/port per bank, LRU replacement
Caches and on-chip buffers writeback, inclusive, 64B line size, 1, 2MB for 1, 4-core tgyss;
32, 128 MSHRs, 32, 128-entry L2 access/miss/fill bufferslfot-core systems
1, 2 channels (memory controllers) for 1, 4-core systems;

DRAM and bus 800MHz DRAM bus cycle, Double Data Rate (DDR3 1600MHz) [£t], core to DRAM bus frequency ratio};
8B-wide data bus per channel, BL = 8; 1 rank, 8 banks per chaBK8 row buffer per bank;
DRAM controllers On-chip, open-row, FR-FCFS scheduling policy [18];

64-entry (8x 8 banks) DRAM read/write buffers per channel, drathenfull write buffer policy
Table 1. Baseline configuration

| Latency | Symbol [ DRAM cycles || Latency | Symbol [ DRAM cycles |
Precharge trp 11 Activate-to-read/write trRCD 11
Read column address strobe (CA$) CL 11 Write column address strobe (CAS) CW L 8
Additive AL 0 Activate-to-activate tre 39
Activate-to-precharge trRAS 28 Read-to-precharge trrpP 6
Burst length tBr 4 CAS-to-CAS tcobD 4
Activate-to-activate (different bank) trrp 6 Four activate windows tEAw 24
Write-to-read tWTR 6 Write recovery twRr 12

Table 2. DDR3 1600 DRAM timing specifications

IPC?ogether N IPC?ogether N
Isi = IPZCV{zlone ) WS = Z IPZCV{zlone ’ HS = N alone
i i i Z IPCi
t ethe
- IPCZ- ogether

4.2. Workloads

We use the SPEC CPU 2000/2006 benchmarks for experimemiaktion. Each benchmark was compiled
using ICC (Intel C Compiler) or IFORT (Intel Fortran Compilevith the -O3 option. We ran each benchmark
with the reference input set for 200 million x86 instructsoselected by Pinpoints [15].

Even though we evaluated all the 55 SPEC benchmarks, wetrgpanemory intensive benchmarks on
which the performance impact of our mechanisms is significghe effect of our mechanisms on the remain-
ing applications is negligible. Characteristics of the FEE® benchmarks are shown in Table 3. We consider
memory read (cache miss) and write (writeback) charatiesisndependently since LPA is designed for
DRAM read efficiency and WIA targets DRAM write efficiency. ®valuate our mechanism on CMP sys-
tems, we formed combinations of multiprogrammed workldaals all the 55 SPEC 2000/2006 benchmarks.

We ran 17 randomly chosen workload combinations for our e €&MP configuration.

4.3. Implementation and Hardware Cost

For evaluations, we periodically measure the aggregatehibrate and BLP every 100K processor cycles
for low-cost estimation. We empirically seygregate BLP threshold andaggregate_ BLP of fset to
2.5 and 0.3 respectively for high BLP estimation. We use &8y 4-way set associative cache structure for
the load PC table and setquest_threshold andaggregate_row_hit_rate_min to 30 and 0.6 for row-hit
estimation. BLP and row-hit information required for LPAdsllected only from reads (not writes).

Table 4 shows hardware storage cost for our mechanisms airngjie and 4-core systems of Table 1. The
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| [ | Reads | Writes [ [ | Reads | Writes |
[ Benchmark | Type [[ IPC] MPKI] RHR[BLP]WPKI] RHR][BLP]] Benchmark | Type ][ IPC[MPKI]| RHR[BLP[WPKI] RHR[BLP]
179.art FP0O0|[0.26] 90.92(95.43 1.78| 9.79|86.75/1.49|| 482.sphinx3 | FP06||0.39| 12.94{83.01/ 1.17| 0.63|58.18 1.79
181.mcf INTO0|[0.06|107.74{70.08 1.32| 11.50/15.03 2.89 171.swim FP00|[0.35| 23.10/36.95 2.31| 8.24|78.33 2.55
173.applu FP0O0|[0.93] 11.40{90.34 1.56| 1.78|81.34]1.74| 462.libquantumINTO06||0.67| 13.51/94.96/ 1.01| 5.87|89.13 1.06
437.leslie3d | FP0O6|[0.54| 20.88/70.50 1.95| 2.72|73.80| 2.05 481.wrf FP06|(0.72| 8.11|72.951.47| 2.52/76.17 1.70
459.GemsFDTD FP06(|0.49] 15.63/45.81{ 2.21| 6.91(/50.60] 2.70 189.lucas FP00|{0.61] 10.61{61.00 1.36] 2.38/34.19| 1.08
450.soplex | FP06|[0.40] 21.24{81.641.30| 3.75|42.48 1.60||436.cactusADM FP06|(0.63| 4.51| 7.42{1.36| 1.22/33.31 1.54
471.omnetpp |INTO06(|0.49| 10.1163.45 1.27| 4.17| 6.88|2.46 176.gcc INTOO0||0.93| 3.24{90.62/ 1.07| 0.54/39.53| 1.56
178.galgel FP00||1.42| 4.84/54.452.99| 1.16|11.513.03|| 464.h264ref [INTO6|/1.48| 1.28|89.56 1.07| 0.28/63.55 1.90

Table 3. Characteristics for 16 SPEC benchmarks: IPC, MPKI (  last-level cache misses per 1K instructions), WPKI (last-I evel
writebacks per 1K instructions), Aggregate DRAM row-hit ra te (RHR), Aggregate DRAM BLP

BLP information (aggregate and individual BLP) is not seahf the DRAM controller to the last-level cache
to avoid additional storage and long wires. The BLP estiamais performed in the DRAM controller, and a
one-bit field (high/low BLP bit in Table 4) is carried by eadyuest. Similarly, one bit row-hit/row-conflict

field is also carried by each request for row-hit estimatiefoke being inserted into the cache.
Single-core’s4-core CMP’s

Structure Cost equation (bits) Cost (Bytes) Cost (Bytes
Aggregate BLP & busy counters and BLP register 16 X 3 X Neore 6 24
BLP estimation Individual BLP & busy counters 16 X 2 X Npank 32 64
High/low BLP bit 1 X Nyysser 4 16
LPA Aggregate row-hit & request counters and row hit rate reg|st 16 x 3 X Ncore 6 24
Row-hit estimation Load PC table’s tag store (16-entry 4-way) 27 X 16 X Neore 54 216
Load PC table’s data store (row-hit/request counters)[2 x 16 x 16 X Ncore 64 256
row-hit/row-conflict bit 1 X Npusrer 4 16
Low-cost bit in cachg Low-cost bit 1 X Niine 2,048 4,096
| WIA [ Row address registers | 32 X Npank | 32] 64|
Total storage cost for the systems in Table 1 2,250 4,776
Total storage cost as a fraction of the last-level cacheagpa 0.2 %, 0.2%
Table 4. Hardware cost (Ncore, Niine, Noank, Noufrer: NUMber of cores, cache lines, DRAM banks, cache fill bufferies)

LPA and WIA require only 0.2% of the total last-level cacheap on both systems. We assume that the
core ID field is already available in each cache line on theré-system. If the core ID field (2 bits) is also
considered, our mechanisms require 12.7KB (0.6% of lagtteache), which is still insignificant. Note that

none of the logic or structures required for the mechanisnosithe critical path.

5. Experimental Evaluation
5.1. Single-Core Results

Figure 8 shows IPC normalized to the baseline LRU for the Miware, Latency and Parallelism-Aware
(LPA), Write-caused Interference-Aware (WIA), and cormddnPA-WIA replacement polices. The MLP-
aware policy is implemented with a set-sampling mechanisa $elects between (MLP-aware) linear and
LRU policies as proposed by Qureshi et. al [17].

Overall, the best performing policy is the combination oAL&nd WIA, which improves performance by
11.4% (6.9% excludingrt) on average. In contrast, the MLP-aware policy improves$qgoerance by 4.6%
(0.6% excludingart). LPA and WIA complement each other and act synergistic&llg make the following

major observations:
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Figure 8. Performance on single-core system

First, both LPA and MLP-aware policies improve performarioe art, sphinx3, mcf, gcc, galgelnd

h264ref However, overall LPA outperforms the MLP-aware policy foosh benchmarks. Especially, for
swim LPA improves performance by 2.3% while the MLP-aware potlegrades performance by 3.8%. The
reason why LPA outperforms the MLP-aware policy overallhattLPA is better at identifying and evicting
low-cost lines that are serviced faster or in parallel inEHRAM system.

Second, both the LPA and MLP-aware policies degrade pednoa forapplu, libquantum, leslie3d, wrf
andGemsFDTD This is because neither are aware of write-caused intréer when they evict dirty cache
lines. This signifies the importance of write-caused irgerhce when replacement decisions are made.

Third, the performance degradations due to LPA are recovbyeemploying WIA together with LPA.
Additionally, WIA alone improves performance f@emsFDTD, lucas, soplex, cactusAD&hd omnetpp
mainly due to its ability in reducing write-caused intedace in the DRAM system. As a result, using LPA
and WIA (LPA-WIA) together provides the best performanceoagall policies.

In the subsections that follow we provide further insighihgsupporting data about DRAM characteristics.

5.1.1. Why Does the LPA Policy Perform Well?Figure 9 shows the total read traffic (from DRAM to the
processor) and aggregate DRAM BLP. Read traffic is essgntrass traffic and is divided into row hits and
row conflicts. A good cache replacement policy would leacessIread traffic (i.e., fewer misses or higher
cache locality), fewer row conflicts, and higher BLP.

LPA reduces row-conflict read traffic significantly fart, sphinx3 andmcf(by 73.3%, 68.5%, and 14.2%
compared to the baseline) in addition to reducing the ovesad traffic as shown in Figure 9(a). This im-
proves performance significantly for these applicationRA lsignificantly reduces overall read traffic fart
andmcfbecause it mitigates the cache thrashing problem that et from. In such applications, evicting
most recently used cache lines improves temporal locajitjmhintaining at least a portion of the working set
in the cache [16]. LPA benefits from this effect since in thagplications, the cache lines it predicts as low-
cost and chooses for eviction happen to be recently used MLlireaware policy also reduces row-conflict

read traffic, but much less than LPA.
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Figure 9. DRAM read traffic and aggregate BLP
LPA also increases BLP fancfandswimby 12.3% and 10.0% compared to the baseline as shown in

Figure 9(b). The increased BLP and reduced read traffic dald&do outperform the MLP-aware policy. The
improved BLP due to LPA translates to performance improvarfa swimeven though LPA increases cache
misses (total read traffic) by 8.5%. In contrast, the MLP+@&wmolicy degrades performancessfimbecause
many of the concurrent misses it estimates to be low-costaligtend up being high-cost bank conflicts
because they map to the same DRAM bank.

LPA significantly outperforms the MLP-aware policy in foup@ications: art, sphinx3, m¢fandswim
This is because the MLP-aware policy is not aware of DRAM Isaakd row buffer locality in the DRAM
system. It relies only on the information about how many essare outstanding at the same time, as discussed
in Section 3.5. In contrast, our mechanism explicitly meas@and estimates the BLP and row-hit rate in the

DRAM system to determine whether a line is likely to be lovsioehen re-fetched later.

5.1.2. Why Is Write-Caused Interference Awareness Desirde? Both the MLP-aware and LPA policies
degrade performance fapplu, libquantum, leslie3d, wrandGemsFDTD even though the read traffic (i.e.,
misses or the sum of row hits and row conflicts) and BLP do nahgle compared to the baseline, as shown
in Figure 9(a) and (b). The reason for the degradation cambed by analyzing the write traffic shown in
Figure 10(a). Even though the total write traffic does notéase, LPA and MLP-aware replacement policies
increase row-conflict writes compared to the baseline. Huikates that these policies increase write-caused
interference, causing DRAM performance to degrade duedoge Inumber of idle cycles on the DRAM data
bus. In fact, MLP-aware and LPA policies degrditbeuantuns performance by 27.0% and 22.0%.

When employed with LPA, WIA reduces the number of row cordliti as many as the baseline LRU
for applu, libquantum, leslie3dandwrf as shown in Figure 10(a). It also leads to fewer row conflicgsnt
the baseline foGemsFDTD Hence, by reducing write-caused interference when eneplayith LPA, WIA
recovers the performance degradation due to LPA, and soresteven improves performance compared to
the baseline (foGemsFDTDby 3.3%) as shown in Figure 8.

Additionally, WIA alone (without LPA) improves performaadorlucas, cactusADM, sopleandomnetpp
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Figure 10. DRAM write traffic and aggregate BLP

by increasing row-hit writes (rather than row-conflict ves) compared to the baseline, thereby reducing
write-caused interference. Note that focas, cactusADMaindomnetpp WIA also increases aggregate BLP

for writes, reducing their average latency cost. On themtlaed, the MLP-aware policy suffers performance
degradation or cannot improve performance for these agpdics due to its unawareness of write-caused

interference in the DRAM system.

5.1.3. Combining LPA and WIA When combined as described in Section 3.3, the performaenefib

of each mechanism is obtained additively. This can be jedtiby observing that the improved DRAM
characteristics for reads and writes of each individual mecsm in Figures 9 and 10 do not significantly
change for LPA-WIA. We conclude that our DRAM-aware replaeat policies significantly reduce costly
cache misses and evictions, thereby improving performaigggficantly on a single-core system.

5.1.4. Effect on System with Prefetchingln this section, we discuss the DRAM-aware replacementypoli
in a system with prefetching. When the DRAM-aware policyas/ely employed with prefetching, there are
two problems that can reduce its effectiveness. First,ulggéfetches that are marked as low-cost by LPA
can be evicted (just because they are marked as low-cost)tfre last-level cache before they are used. This
reduces the effectiveness of prefetching and thereforehaanperformance compared to the baseline LRU
policy without LPA. Second, useless prefetches that areamaoked as low-cost can stay in the cache for a
long time consuming cache space. This can reduce cacheepéjcby evicting useful cache lines.

To overcome these problems, we take prefetch usefulnesaagbunt in LPA replacement decisions. The
basic idea is 1) to ignore the low-cost bit of prefetches #natestimated as useful so that LPA does not evict
useful prefetches that are not used yet even if they aregieztlio be low-cost, and 2) to evict prefetches that
are likely-useless earlier so that cache space can be usddrfand and useful prefetches.

We measure prefetch accuracy on an interval-basis. In a#ehval, if the estimated prefetch accu-
racy from the previous interval is greater than tieefulprefetchthreshold the low-cost bits of prefetched
lines are disregarded by LPA in the current interval. Sinmlawhen prefetch accuracy is less thase-

lessprefetchthreshold prefetched lines are prioritized for replacement.

21



On the other hand, WIA does not require to be prefetch-awktnes is because writes are not immediately
critical to an application’s progress. Writes become caitionly when the DRAM controller cannot service
demands and useful prefetches (i.e., reads) due to writeeckinterference. Servicing many writes quickly

so that reads can be serviced without interruption of wiibes long time leads to high performance.

12— Figure 11 shows the average performance of the baselinewigrefetching,
11—
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stream prefetching (32 streams, prefetch degree of 4, tpreflistance of 6 cache
lines), MLP-aware, and DRAM-aware replacement (LPA and \WWigether). We
empirically setusefulprefetchthresholdas 0.5 andiselesrefetchthresholdas

0.2. Prefetch accuracy is measured every 100K processlascyc

IPC normalized to baseline

The DRAM-aware replacement policy improves performance3l2fo com-

pared to prefetching whereas the MLP-aware policy imprgerormance only

_ by 4.4%. This is because the MLP-aware policy is not awareRABI charac-
Figure 11. DRAM-aware re-

placement with prefetching teristics or prefetch usefulness. We conclude that DRANMwaweplacement is

effective in a system with prefetching by taking prefetckfutness into account.

5.2. Multi-Core Results

We evaluate our mechanisms on a 4-core system with a shatddvVal cache. Due to space limitation, we
report only average system performance across 17 randsefdgted workloads. Figure 12 shows average
weighted speedup (WS) and harmonic mean of speedups (H®Efbaseline LRU, MLP-aware, LPA, WIA,

and LPA-WIA replacement policies.

LPA alone improves WS and HS by 4.6% and 8.4% compared
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cost lines for the application running on each core. WIA alaiso ‘é %z
significantly improves system performance by 4.7%/4.6% (M&. S 1!
WIA is more effective in a CMP system than a single-core syste § 222:

0.44

This is because write-caused interference becomes maseesgnce 0.25

0.0
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portant to service writes quickly so that reads can receivekgser-

Figure 12. Performance on 4-core system
vice without being interfered-with by writes in multi-cosystems.
When combined together, LPA and WIA improve WS and HS by 9.5% H.3%. On the other hand, the
MLP-aware policy improves only HS by 3.4%. Its performaneedit is is small mainly due to its unaware-
ness of DRAM characteristics. We conclude that our DRAM+&awaechanisms are also very effective and

improve system performance significantly on multi-coreeyss.
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6. Related Work

To our knowledge, this is the first paper that proposes cagplacement that is aware of the characteristics
of the DRAM system. Our approach is to integrate last-lewslhe and DRAM design tightly. Although
there has been significant amount of work in both DRAM and-l&stl cache management, these mainly

considered each component in isolation rather than dexjgme to be aware of the other.
6.1. DRAM Access Scheduling and Buffer Management Policies

Many DRAM scheduling and buffer management policies [18, 118 12, 6, 8] have been proposed in
previous works. Their mechanisms aim to improve DRAM thigugt by taking advantage of row buffer
locality and bank-level parallelism in the DRAM system. Qast-level cache policies assume that the un-
derlying DRAM controller exploits these characteristi¢fierefore, our mechanisms should work better with
a DRAM controller that better exploits the DRAM charactgds. For example, our mechanisms improve
system performance (HS) by 13.0% on a 4-core system withlpbsat-aware memory scheduling [12].

Most previous DRAM scheduling policies [18, 12, 6, 8] do ndtleess how to manage write-caused in-
terference for high DRAM throughput. In contrast, our watigused interference-aware (WIA) mechanism
evicts dirty lines intelligently from the last-level cacke that overall write-caused interference can be re-
duced. As such, WIA is orthogonal to these DRAM scheduling lauffer management policies.

Other proposals [9, 13, 19, 7] discuss write buffer managemelices and DRAM scheduling for writes.
Our baseline employs one of the most recently proposedipslfthat does not consider any write for DRAM
scheduling until the write buffer is full). For memory int&we applications, this policy is reported to tolerate
read-to-write switching penalties better than other akéves with today’s high-bandwidth DDR DRAM
systems due to their large write-caused interference [7].

As shown in Section 3, our mechanisms allow the underlyingABIRcontroller and write buffer manage-
ment policies to better exploit row buffer locality and BL& both reads and writes by evicting less costly

lines that can exploit those characteristics better.
6.2. Last-Level Cache Management

Many cache replacement/insertion policies were proposeéchprove temporal/spatial locality [1, 16, 2].
These are all orthogonal to our work and can be combined withneechanisms to make them DRAM
characteristic-aware.

Jeong and Dubois were the first to propose a replacemenydolia cache with two miss costs (local and
remote memory access) [4, 5]. Qureshi et. al. showed that laR-8vare replacement policy can signifi-
cantly improve performance by taking into account conawydevel of misses in the memory system [17].
However, none of these policies are aware of DRAM charattesi. We have extensively analyzed and

gualitatively and quantitatively compared our proposalthe MLP-aware policy in Sections 3.5 and 5.
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Some other studies propose aggressive early writebacki@slj9, 7, 21], which proactively send write-
backs of dirty lines to the DRAM before they are replaced. Sehproactive policies also aim to reduce
write-caused interference to reads. However, these meshamequire significant additional hardware and
state machines that search for dirty lines to be evicted fitmriast-level cache. In contrast, our proposal is a
simple replacement policy that takes into account the ddsbtt reads and writes in the DRAM system. As

such, our mechanisms can be combined with this prior worlbtaio larger benefits than each alone.
7. Conclusion

This paper makes a case for designing the last-level cadiegsoin a manner that is aware of DRAM
characteristics. Previous cache replacement policiesmy@mingly optimize for minimizing cache misses
and ignore critical DRAM performance characteristics thii¢ct the cost of each miss: row buffer locality,
bank-level parallelism, and write-caused interference. Show that taking these DRAM characteristics into
account in the last-level cache replacement policy carifgégntly improve entire system performance.

Our mechanisms are not limited to DRAM technology-basednmnmaeémory systems. Other emerging
memory technologies are very likely to employ multiple barmd row buffers to provide high bandwidth
and low latency. They will also likely impose high write-cmd interference due to high bus frequency. As
such, the key ideas of our mechanism can be seamlessly @ppleamerging memory technologies, and our

proposal can possibly be even more beneficial in such systamto longer read/write latencies.
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