
Single Instruction Stream Parallelism Is Greater than Two

Michael Butler, Tse-Yu Yeh, and Yale Patt Mitch Alsup, Hunter Scales, and Michael Shebanow

Department of Electrical Engineering Motorola Incorporated

and Computer Science Microprocessor and Memory Technology Group

The University of Michigan 6501 William Cannon Drive West

Ann Arbor, Michigan 48109-2122 Austin, Texas 78735

Abstract

Recent studies have concluded that little parallelism

(less than two operations per cycle) is available in sin-

gle instruction streams. Since the amount of available

parallelism should influence the design of the processor,

it is important to verify how much parallelism really ex-

ists. In this study we model the execution of the SPEC

benchmarks under differing resource constraints. We

repeat the work of the previous researchers, and show

that under the hardware resource constraints they im-

posed, we get similar results. On the other hand, when

all constraints are removed except those ~equired by the

semantics oft he program, we have found degrees of par-

allelism in excess of 17 instructions per cycle. Finally,

and perhaps most important for exploiting single in-

struction stream parallelism now, we show that if the

hardware is properly balanced, one can sustain from 2.0

to 5.8 instructions per cycle on a processor that is rea-

sonable to design today.

1 Introduction

The increasing density of VLSI circuits has motivated

research into ways to utilize large numbers of logic el-

ements to improve computational performance. One

way to use these elements is to replicate multiple func-

tional units on a single chip. This technique is ef-

fective only if the amount of instruction-level paral-

lelism present in real applications warrants it. Early

studies [3, 5, 14, 15, 16] suggested that this was in fact

the case. More recently, some researchers[l, 2] have con-

cluded that insufficient parallelism exists in real, non-

scientific applications to support processors that will ex-

ecute more than two instructions per cycle.

Permission to copy without fee all or part of this material IS granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright nonce and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific perrmssion.

Since the amount of available parallelism should influ-

ence the design of the processor, it is important to verify

how much parallelism exists. To do this, we have un-

dertaken a study of available parallelism in optimized,

compiled code. We have used nine of the ten programs

in the SPEC suite,l a set of real applications that have

become the de facto standard in compute-bound per-

formance benchmarks. We have measured the perfor-

mance of these benchmarks on several execution mod-

els, including those studied by Patt and Hwu[3, 5] and

by Smith and Johnson [l] and Jouppi[2]. We have also

measured the performance of these benchmarks on an

unconstrained execution model in order to quantify how

much parallelism exists in these benchmarks that could

be exploited if the artifacts of the processor did not pre-

vent it.

Our results show that, with undue constraints on the

processor, it is difficult to sustain parallel execution of

more than two instructions per cycle. On the other

hand, when all constraints are removed except those re-

quired by the semantics of the program, we have found

degrees of parallelism in excess of 17 instructions per cy-

cle. Finally, we show that when the hardware is properly

balanced, one can sustain an execution rate of 2.0 to 5.8

instructions per cycle on a processor that is reasonable

to design today.

This paper is organized in six sections. Section 2 dis-

cusses restricted data flow, an abstract execution model

that allows available instruction stream parallelism to

be exploited. Section 3 describes our experiments: the

simulator, the benchmarks, and the machine configura-

tions tested. Section 4 reports the results of our simu-

lations and discusses the influence of various machine

features on performance. The model used by Smith

and Johnson[l], the unconstrained case, and several ma-

chines which are realistic to implement today, are all

identified. Section 5 presents a brief discussion of im-

plementation issues. Section 6 offers some concluding

remarks and discusses the future work we have planned.

1The Nasa7 benchmark was not simulated because this bench-

mark consists of seven independent loops. Due to time con-

straints, we omitted these loops.

Q 1991 ACM 0-89791 -394-9/91 /0005/0276$1 .50 276

2 The RDF Model of Execution

To exploit whatever parallelism exists in the instruction

stream, one needs an execution model devoid of arti-

facts that limit the utilization of that parallelism. The

abstract restricted data flow (RDF) paradigm is such a

model. It is characterized by three parameters: window

size, issue rate, and instruction class latencies.

Processing consists of systematically issuing instruc-

tions from a program’s dynamic instruction stream,

converting those instructions into a dynamic data flow

graph, scheduling instructions for execution when their

flow dependencies have been resolved, and retiring those

instructions after execution has completed. The dy-

namic instruction stream is created by an omniscient

branch predictor that always knows the way a condi-

tional branch will execute. Instructions are issued in the

order they appear in the dynamic instruction stream.

The window size is the maximum number of instruc-

tions from the dynamic instruction stream that can be

present in the dynamic data flow graph at any instant

of time. (Instructions can be issued as long as the num-

ber of instructions in the window is less than the window

size.) The issue rate is the maximum number of instruc-

tions that can be removed from the dynamic instruction

stream and entered into the window in a single cycle.

We call the group of instructions that can be brought

into the machine in one cycle a packet. The instruc-

tion class latencies specify the set of operations and the

latency associated with each operation. In the RDF

model, the number of functional units is unbounded,

each can perform every desired operation, and the Ia-

tency associated with each operation is specified.

The RDF model was first defined because its parame-

ters correspond to some important practical constraints

on cpu design [3]. The RDF restriction on window size

corresponds to a practical limitation on the amount of

buffering that can be supported. The restriction on is-

sue rate corresponds to the limitation on instruction

memory bandwidth.

Clearly, the RDF model specified above, with its om-

niscient, branch prediction and unbounded functional

units, is not realizable. Nonetheless several variations

of the RDF model are interesting to study. For exam-

ple, if in addition to the functional units, the window

size and issue rate are also unbounded, we have an ex-

ecution unit that presents no impediment to exploiting

all the parallelism present in the application. We call

this model an unrestricted data flow (UDF) machine. It

specifies all the parallelism available in the instruction

stream.

On the other hand, if we restrict the various parame-

ters of the RDF model, we obtain upper bounds on the

level of performance that is possible. For example, the

RDF model gives an upper bound on the performance of

a machine that can support a specific window size and

issue rate if function unit capability and branch predic-

tion were not a problem. If we couple the RDF model

to a real branch predictor, we obtain an upper bound on

the performance of a machine that can support a specific

window size and issue rate if functional unit capability

were not a problem. Finally, if we further restrict our

RDF model to a functional unit configuration that is

implementable, we have an execution model that corre-

sponds to a realizable machine that efficiently exploits

the available parallelism in a single instruction stream.

We first specified a realizable implementation of the

RDF model, the High Performance Substrate (HPS) in

1985 [3]. HPS was originally developed as a speedup

mechanism for complex instruction set architectures, al-

though we quickly discovered its applicability to the im-

plementation of all architectures. Today, it is continu-

ally being refined by our research group in an effort to

improve its performance and reduce its cost of imple-

mentation. Its ultimate objective, emulating an (opti-

mal) RDF machine, has not changed.

In this paper, we are concerned with the influence of

the RDF parameters on the performance of the SPEC

benchmarks. We will identify several implementable

and functional unit capability.

Experiments

Benchmarks

RDF models, with differing values for window size, issue

rate,

3

3.1

The results presented in this paper are for nine inte-

ger and floating point programs from the SPEC suite:

eqntott, espresso, gee, Ii, doduc, fpppp, matrix300,

spice2g6, and tomcatv, compiled for and run under the

M88000 instruction set architecture. The benchmarks

were compiled using the Green Hills FORTRAN 1.8.5

compiler or the Diab Data C Rel. 2.4 compiler with all

optimizations turned on. (A particular compiler was se-

lected for a given benchmark if that compiler produced

the most efficient object code (i.e. shortest run time)

when run on an MC88100–a conventional scalar pro-

cessor.) All benchmarks were run unchanged with the

following exceptions: cpp is not called in eqntot t, gcc

was run without cpp and used the output of the pre–

processor as the input file. Due to time limitations, each

benchmark was simulated for ten million instructions.

Table 1 shows instruction classes and their simulated

execution latencies. Each instruction class is listed with

its abbreviation (A for floating point add, M for floating

point and integer multiply, L for memory loads, etc.),

its execution latency (in cycles), and a description of

the instructions that belong to that class. The laten-

cies for all but one machine were taken from Smith and

Johnson[l]. We know of several machines with smaller

floating point latencies, however, so in order to inves-

tigate the effect of shorter latencies, we simulated one

277

Instruction Exe- Description

cution

Class Latency

(A) FP Add 6 FP add, sub, and convert

(M) Multiply 6 FP mul and INT mul

(D) Divide 12 FP dlv and INT div

(L) Mem Load 2 Memory loads

(S) Mem Store - Memory stores

(B) Branch 1 Control instmctions

(T) Bit Field 1 Shift, and bit testing

(I) Integer 1 INT add, sub and logic OPS

Table 1: Instruction Classes and Latencies

DatacoliactadfromMa$kinstmcOontiawC compIlw Mb, FORTRANcom@exGreenW)
50 ~ I [I I I I 1 I

.J.......l.................I........II I I
in....a..1... ■~~

❑ ES%SS3

~ Em

l__.--l
Eluo-c

EFFFW

S MATRIXW

a Wx2G6

L?TWCATV

FPAdd lNT/FP NT/FP Branch Memo(y Manwy sit Field Integer
Mul Div Lcxad Store

Instruction Class

Figure 1: Benchmark Code Analysis

configuration using floating point Iatencies of 3, 3, and 8

for floating point add, multiply, and divide, respectively.

Figure 1 shows histograms of the dynamic frequency

of each instruction class for each of the nine benchmarks.

Within each instruction class, the nine vertical bars cor-

respond respectively to the nine benchmarks listed at

the right of the figure. As can be seen, approximately

33 percent of instructions are simple integer ALU oper-

ations; loads and branches comprise another 28 and 15

percent respectively. Figure 2 presents a stack chart of

the same data organized by benchmark.

3.2 Machine Configurations

The instruction class frequency is particularly imPor-

tant for examining performance of machines such as

the ones we simulated. Machine resources must reflect

the instruction frequency if we are to achieve efficient

utilization of functional units. Also, since issue is de-

pendent on functional unit configuration (only one in-

struction can be issued to each functional unit each cy-

cle), the machine configuration contributes to the upper

bound on execution throughput.

CedeLkQiWton &da cdlectadh’ M&lk instwoca twe, C cwn~lec VW. FORTSANcom~lecGreenHIII)

100

90

80

P 70
e
r 60
c

; 50

I

I

40 “:”:’:’:’:’im.
a :::::::::::,,,,,,,,,,:
930i33’
e ::::::::!:

*
20

to

0

I
H Integer

❑ S,t Held

❑ MemovStore

❑ MemoryLosd

❑ Branch

= IN1J7PDIV

❑ INTFPMul

■ FPA5d

snT01TEwEs3m LtmJ.c FPWP M;? SPCEZ26mMcAlv

Benchmark

Figure 2: Instruction Class Distribution in Benchmarks

The machine configurations simulated are listed in

Figure 3. Each machine is specified by its set of func-

tional units, branch prediction mechanism, issue rate,

retirement mechanism, the size of an instruction packet

(i.e. a group of instructions that are issued in a single

cycle), and the characteristics of the load/store pipes

and instruction prefetch buffer.

With respect to its functional unit configuration, each

set of parentheses corresponds to a single functional

unit, and the letters within the parentheses indicate

the instruction classes that the functional unit is ca-

pable of executing. In the Smith/Johnson machines,

each functional unit is capable of executing only one

class of instructions, so each set of parentheses contains

only one letter. The UDF and RDF.18 machines can be

described as machines with an unbounded number of

functional units, each of which is capable of executing

all instruction classes. The remaining machines have

functional units that are capable of handling multiple

instruction classes. For example (see Figure 3) the ma-

chine identified as 4F2M has four functional units. One

of these functional units can execute instructions from

the classes A, M, D, and I, one can execute instructions

from B and I, and two can execute instructions from

classes L, S, T, and I.

In choosing machine configurations an effort was

made to match functional unit capabilities to instruc-

tion class frequencies, In addition, the relative cost
of adding functionality was considered. If infrequently

used functional units could be made to service an addi-

tional (frequently used) class of instructions at nominal

increase in hardware cost, the resultant machine perfor-

mance would be enhanced. For example, integer ALUs

service the most frequently occurring instructions and

can be implemented at a nominal cost relative to the

rest of the machine. As such, all functional units are

278

Machine Functional Branch PacketRetire #Of Load hi.
Unit hue Irlat.1 I Prefetch

Name Configuration RedictionBate MecL Packet Store Bufer

S&J4 (A)(M)(D)(L)(SI(B)(TI(f)(f)(L)85%Syth 4 OticfOtdE?1 ~uenti,] Aligned4wd,

UtIF ca(A,M,f),fJ,B,’f,~ IO(% hfinb oti~o& I outc40dR lhnliaredFetch

RDFJSco(~M,D,~~B,TJ) look 8 owdofi I Otichk un~kmdFetc~

4FZM (A,M,D,[)(SJZ(L,S,T,I) 1~ 1 h Order 4 o.t,f orkr untbedFe~h

4EZMB85(A,M,D,I)(B,l)2(L~,T,fJ 85%Byth 1 InOhkl 4 OutJD?&r UndigdFekh

6F3M (AJ(M,D,I)(B,93(L3,T,I) 1~ 1 Inode? 6 OutorOr&r UnahgwdFdcII

8F3M (.W(KNDJKT,W)W$,TJ) lM% 1 InOrda 8 OutofO?fk UnJigiwdFetch

WAB85 (A,IXMHIVXTN!D3U.$,TJ)85%Byth 1 h Order 8 OutnlOr&r UndigriedFetch

8P3fJBE (A,lXfA,f)(Il,f)(T,fXBJ)2&#,TJ) BedBP 1 inorder 8 OutofO&r UnaiigredFetch

Figure 3: Simulated Machine Configurations

With respect io its functional unit configuration, each

set of parentheses corresponds to a single functional

unit, and the letters within the parentheses indicate the

tnstruciion classes that the functional unit is capable of

executing. A number appearing before a set ofparenthe -

ses indicates that mu!tiple copies of the functional unit

exist. In the case of our abstract machines, UDF and

RDF.18, an unbounded number of functional units are

present.

capable of executing simple integer operations (except

in the simulations of Smith and Johnson’s machines).

3.3 Silnulation Process

The simulator is capable of modeling a wide range of

machines as well as execution models. The simulation

process works as follows:

An instruction level simulator for the MC881OO

(ISIM) reads in the object code and simulates execu-

tion, producing an instruction trace. our RDF sim-

ulator reads in a configuration file which describes the

machine to be simulated and then begins processing the

dynamic instruction stream produced by ISIM. The sim-

ulator performs data dependency analysis and schedul-

ing, and gathers execution rate statistics.

Our simulator makes several simplifying assumptions:

Register renaming is performed. Renaming elimi-

nates anti and output dependencies and is critical

for achieving high performance with the models of

execution we simulated.

No memory renaming is performed. In the early

stages of the simulator, we supported memory re-

naming at the byte granularity level, but found that

renaming occurred so infrequently, either because of

the algorithms or the actions of the compilers, that

renaming did not noticeably improve performance.

●

No caches are explicitly modeled in the current ver-

sion of the simulator. We assume 100 percent hit

rates for both I and D caches.

No bank conflicts are modeled.

All machines modeled are capable of performing

store/load forwarding if stores and loads to the

same memory location are both resident in the win-

dow. We found that this forwarding occurs very

infrequent ly.

All functional units are fully pipelined (i.e. able to

initiate a new operation each cycle) and are mutu-

ally independent.

Instructions are removed from the window (i.e. “re-

tired”) in whole packet units after all instructions

in that packet have completed execution. This as-

sumption corresponds to our use of clheckpointing

[6] as a mechanism for supporting both, branch pre-

diction miss recovery and precise interrupts.

When a trap is encountered, the machine being sim-

ulated must stop issue, wait for all instructions cur-

rently in the window to complete, and then execute

the trap instruction.

There are several key parameters that define execu-

tion in the simulator.

●

●

●

Window size - This parameter limits the total num-

ber of instructions that can exist in the machine at

any one time. An instruction is considered in the

machine, and thus occupying space in the window,

from the time it is issued until it is retired. In-

structions can be in one of four states: waiting for

operands, ready but waiting for the assigned func-

tional unit to become free, executing, or waiting for

retirement. Window size is given in the number of

issue packets.

Packet Issue Rate - This parameter indicates the

number of packets that can be issued per cycle. A

packet consists of a group of instructions that are

brought into the machine in a single cycle. Nor-

mally the packet issue rate is set to one and the

number of instructions issued per cycle is deter-

mined solely by the machine configuration.

Prefetch Buffer Configuration - An instruction

prefetch buffer may be modeled with specified size

and refill characteristics. This was used only in the

Smith/Johnson machines in order to match their

configurations.

Functional Unit Configuration - The number and

capabilities of all functional units are specified in

the configuration file. Each functional unit is cle-

fined by the instruction classes it is capable of exe-

cuting.

279

● In/out of C)rder Execution - This flag indicates

whether instructions can be executed out–of–issue

order for each functional unit. In–order execution

still allows for slip to occur between functional units

— i.e. operations are executed in–order within each

functional unit, but out–of–order with respect to

other functional units.

Branch Prediction - There are two types of branch

prediction supported - synthetic and real[l 1]. With

synthetic branch prediction, the branch prediction

accuracy is specified in the machine configuration

file. As branches are encountered in the dynamic

instruction stream, a random number is generated

to determine whether the branch is predicted cor-

rectly or not. This is the mechanism used by

Smith/Johnson [1]. With real branch prediction,

an actual prediction is made and then compared to

the real outcome as determined by the trace. If a

prediction fails, issue is stalled until the branch is

resolved. This models the performance of a check-

pointing mechanism.

Instruction Claas Latency - These latencies de-

scribe the number of clock cycles required to ex-

ecute a given type of instruction. The latencies we

used are given in table 1. The only exception to

these latencies is the machine model with the “SF”

suffix. This machine used smaller floating point la-

tencies of 3, 3, and 8 for floating point add, multiply,

and divide respectively.

Unbounded Functional Units - This flag allows the

simulator to model a machine with an unbounded

number of functional units. With this machine,

there are effectively aa many functional units aa are

needed in any given cycle.

Instruction Issue Constraint - This flag indicates

whether instructions are assigned to a particular

functional unit at issue time (with at most one in-

struction going to each functional unit), or whether

they are issued to a common window. The con-

sequence of assigning instructions at issue time is

that issue is constrained to match each instruction

to a unique functional unit. Thus if an instruction

can not be assigned to a functional unit capable of

executing it, that instruction and all instructions

following it cannot be issued in that cycle.

Simulation Results

Each benchmark was simulated under three sets of ma-

chine configurations: (1) a model faithful to the previous

work of Smith and Johnson[l], (2) a model represent-

ing no artificial constraints on the processor, and (3)

realizable machines obtained by restricting the values

for parameters of the unconstrained machine. We will

discuss the simulation results for each set of machine

models in turn.

4. I Previous Work

For each of the nine benchmarks (Figures 4 through

12), the curve labeled SJ4 presents the results of model-

ing the assumptions and machine configuration of Smith

and Johnson’s machine 4[1]. (All four machine config-

urations were simulated, but only SJ4 results are pre-

sented for clarity in the figures. SJ4 was selected be-

cause it demonstrated the highest performance of the

four Smith/Johnson machine models.) In this model, a

four instruction wide prefetch buffer is filled with mem-

ory words aligned on a four-instruction-word boundary.

Thus, as many as 3 of the 4 instructions in the prefetch

buffer may not be required. Instruction issue, the act

of bringing instructions into the machine, is not con-

strained by functional unit configuration. Thus, for ex-

ample, more than one integer instruction can be placed

in the window in a cycle even though there is only

a single integer ALU (The integer instructions will of

course be scheduled for different cycles). The functional

units execute instructions in data-dependent order and

instructions are removed from the window upon com-

pletion. Loads and stores are executed in order and

store instructions are executed only after all previously

issued instructions have completed. Branch prediction

accuracy is 85 percent (synthetic) as in [1].

While a direct comparison is not possible due to differ-

ent instruction set architectures and different compilers,

one notes from Figures 4 through 12, that the results of

our simulations are consistent with results published by

Smith and Johnson. Our simulations show performance

between 1.7 and 2.1 IPC for the integer benchmarks,

and between 1.4 and 3.1 IPC across the floating point

benchmarks. Smith and Johnson show performance in

terms of speedup over a scalar processor, and report

the harmonic mean for their entire benchmark suite.

To provide a rough comparison between our results and

those published by Smith and Johnson, the IPC of the

superscalar machine executing a particular benchmark

is divided by the IPC of a scalar machine.

Several details of the Smith/Johnson machines im-

pede high performance unnecessarily. The most obvi-

ous limit to achieving high performance is the issue rate

of four. The machine is comprised of nine independent,

pipelined functional units, allowing for a peak execution

rate of nine IPC. However, since a maximum of four in-

structions are issued per cycle, peak execution has been

reduced to four IPC.

Aside from the four instruction wide fetch limit, there

are three additional machine characteristics that limit

performance: a poorly balanced machine configuration,

an overly–constrained prefetch buffer, and a sequential

280

load/store execution constraint.

A significant source of performance degradation in the

Smith/Johnson machines is an imbalance in the ma-

chine configurations. The scarcity of integer units gives

rise to a performance bottleneck. If integer operations

comprise nearly 38 percent of the instructions in the

integer benchmarks and the machine contains only one

integer unit, then it is unreasonable to expect a speedup

of much greater than two simply because the integer

ALU will be saturated. This is in fact what happens in

our simulations — the integer units are constantly busy

and the execution time for the program is determined

largely by contention for the integer ALU resource.

Another bottleneck to performance is the behavior of

the prefetch buffer. Because the buffer is aligned with

respect to memory, any branch targets in the middle of

cache lines will reduce the number of useful instructions

fetched. Assuming a uniform distribution and small ba-

sic blocks, on average only 2,5 useful instructions will

be fetched per cycle by such a prefetch buffer. As dis-

cussed in [1], if the prefetch buffer were expanded to

fetch two lines from the i–cache, and perform alignment

so as to produce four useful instructions (in the absence

of the end of basic blocks), performance would improve.

Another shortcoming of the prefetch buffer is that it is

only refilIed when completely empty. If, for instance,

the buffer contains four instructions but can only is-

sue two due to a full window, the prefetch buffer does

not attempt to fetch new instructions into the empty

buffer space. The next cycle, regardless of the available

window space, the prefetch buffer can only issue two

instructions. This inefficiency can be eliminated at the

cost of a more complex prefetch controller by prefetch-

ing anytime there is room in the prefetch buffer. These

two features unnecessarily limit the ability of the ma-

chine to issue instructions and thus impede execution

throughput,

Finally, in the Smith/Johnson model, execution of

loads occur strictly in sequential issue order with re-

spect to other loads, and stores are executed only after

all previous instructions (i.e. instructions issued before

the store) have been executed. These constraints are

applied in order to maintain a consistent state in the

memory system. This is unnecessary, however, with the

support of a checkpointed write buffer as described in

[6]

When all of the changes suggested above are imple-

mented in a machine model, the improvements have

a synergistic effect and performance improves signifi-

cantly. For instance, removing the sequential load/store

constraint allows for greater performance to be gained

from the addition of extra load/store pipes. The result

of implementing all of these is a performance increase of

30 to 50 percent (.6 to 1.0 IPC) over the Smith/Johnson

model, across the four integer benchmarks tested (gee,

Ii, eqntott, and espresso).

EQNTW1’IInatructknLevelPamllebm Upper Boond 3(0 lPC
8 8 ,.. s m-.---v

,. m-e
.m,

7- - --_ ——_____ ,

I

---------------------Jo

-.-t” ---_ --- ——_________________

m = F31F.B

6- - ----- ~,__________________________________

#
* 8F3M

5- ---------------
*8FSMR3S.C

0 ff’24JRB,.

- _+----------------

A;.:ZT=-====:”;::=

-- 8F3M245

c ,’

3 -- ~------ ~;.~_____._.___ --_--::_ :__J_J’ *WW

“+

-- ~T::&”-----+.’-+*--_+-+

1

- 4F2M

2 tie-? ::”:: ?::::::::, ::- -X 4F2MB85
#.,:, *.-.x :.x-- -“ ‘“-

,.,x’
- S&J4

1 “z---
Y

o H-J
1234 567s 9 10 11 12 13 t4 15 16

Window SJze (packets)

Figure 4: Instruction Level Parallelism of EQNTOTT

ESPSEPSOInfiction Level Panileli,m Up~r Bourn+179uc

‘~q
6

! ~~

----- ;,-- _---- __ —________________________
,.”

5 --_: —__ ——___-__ —________________________

1

1-1 .“
p4 - A --

/

o ~t-1
12345678 9 10 11 12 13 14 15 16

Window Size (packets)

Figure 5: Instruction Level Parallelism of ESPRESSO

CCChwtmction LevelPadelbm Upper Boud 38 lPC

‘~;
6

t

-------- ----------------------------- ..__
m

.,.,’ 1
5

11

.8__________ ––– ______________________-.. --’

‘4 ‘“--m----------------------------------- ..__
I

/

c ,

3

------A
‘-”------- ;:>:.-i,>%<.+?.kg.%:-*-* -*-~--v-

+ ..9=.+::? ::.::

P

. ..+..- ,. --, .$, ,

2 ---- <. _- .--,.-— ,-—, —--,-- —.-—-,---,.--.
--- m.. .=- .-. -- -— --- -—. -— -- .-. ---

~1

, #if:-: __________________________________ [

* KJFB

48$24.4

02$3MR7sc

+. Ww Rs

* 8F3MP45

o 6F2M

- 4F2M

X 4F2M@85

- S&J4

1
■ FD$!8

* 8F2M

~sF3MlWSF

.+.2FWRB

‘) 8F3M,?45

o 6FW

- 4F2+4

x 4F2M285

- S&J4

I

12345678 9 10 11 12 1S 14 15 16

Window Size (packets)

Figure 6: Instruction Level Parallelism of GCC

281

LI Instruction LevelParaUeli3mUpper Bound: 162R
8 m m ,—,—, , ,-

., ...,.- “

7 +--------=~-------------------------------

I y“ I
6

t

i’ i
, +--__L-----___------_-----___-----___---/

II’ I
P 4 4-i_ ------______ -----_ J_---_ --------___-J

c

3

2

o~
12345 6789101112131415 16

Window Size (packets)

1
-.W B

& 8F24A

~8F3MFasJ

+. 8X$44RB

* 8F3W885

0 S$w

- 4F2M

X 4F2MS8S

-S6J4

Figure 7: Instruction Level Parallelism of XLISP

DODUC Instruction Level Parallelism U~er BOUML66 IPC

:~

1
__________________._,_._::::_______

5
,.

s ““
,,

p4 --------------- .-m. -----------------------

c s’ 1
3

-G--’----J ~

,#
,,

2, ---------- ------------------------
-+-.*.-..

. .

1

..+ ..,=F*

, ;’: . . ,=. :&’l+?_’:::::’-r ________

o~
12345678 9 10 11 12 13 14 15 16

Window Size (packatsj

X FCIFL9

* 8F244

~WSMFSS

6- %M R8

-- SF3Msa5

* 6F?44

- 4F2k4

X 4F2MB&

-S3J4

Figure 8: Instruction Level Parallelism of DODUC

FPPPPMruction LA Prxallelmm I@r Bound,378 WC

8~

7

t -----~
6

t

——__--- —______________________________ .-.
a

,.. .1-

aa I
5

t--------------

_*-–U––____– _____
m ----{

I g

p4- - -— —__--- —____,-- —______ —_________________

c .’

3 ---___ --l’_”___ -.________ ._____ ––__v–

.“

2- ------------- _-

1 -- –-#- -&=*_x.. x=:g:x::-:~::?::?:::;;?-

,,epaf’-”’-””
-/

b~
12345678 9 10 11 12 13 14 15 16

Window !lze (packets)

■ Fcf B

* 8F2M

0w3MWS$

. *2M Iw

-J-SF3MZas

+ SF?4A

- 4F3M

X 4F2MS85

- S&J4

Figure 9: Instruction Level Parallelism of FPPPP

8

7

6

5

I
?4

c

3

2

1

MATSIX340 Inatmction Level PmlleliamUpperBound 1166WC

e::::::::::i

--- ■ .-* ---m9- -* -m -s-m

~F2;----------_-:;;:z’z?’”
.:::=.::.x:::%%::r::’~’””~

--- ~7FG%---------------
&/.i,’,x,,.x4

.,8<-A-------------
..

o~
12345678 9 10 11 12 13 14 15 16

Window Size (packets)

- FDF!3

* SF2M

GeF3h4Fa2f

+ 2FW.RB

.* 8F3M2$5

+ 6FWJ

- 4F2?4

X 4F2MB45

- S&J4

Figure 10: Instruction Level Parallelism of MATRIX300

SPICESG6Ind.mction Lavel Pe.rallelimnUpper Bound 17 IFT
8

7

6

5

I
P4

c

3

2

1

0

, , , ..,. ,. i, ...

---- ~-----------------------------------

■

✍✚✍✍ ✿✿✿✿ ✍✍✍✍✍✍ �✿✍✍✍✍✍ ✿✿✿ ✍✍✍ � ✿✿✿✿✿✿✿✿✿✿✿✿

✿✿☞✿☛ ✍☛✍☛✍✎

✍✍✍

❞ ~~:o.+ko””+. -”>”+-2”-”+_,.—.,--.,--——————-,..<.---*-“
.:.. ~->. e”’~”’>i’’+—=’-;=”=””---------I

--. ---A--

---~7’ .<.X-:%’S’”: ---

~ ..:.:”:”:2:::”:----–-.—————---——————--————-.-——---————----—
12345S78 9 10 11 12 13 14 15 16

Window Siza (packets)

mFQF!.3

* 8F2M

~3F3L4R3%

‘b-W2MRB

., 8F3MS85

0 6FZM

- 4F%

X 4F2MB85

- S&J4

Figure 11: Instruction Level Parallelism of SPICE2G6

TOMCA3V In&uction Level Pmnllehmo Upper Boud S30I PC

~~’” ‘ ““”””’””’ {
_––______ –––. _,a_–,a –______ – _____________

6 ~----------------’ ------------------------

!----------‘-----------------------

,

5 ‘:––__ 1

‘~ ~
m,’

p4 ------ . ------------- —----- ——------—

c ,
3 –––.+ ..–. –.–-.. –3Z.V2+-L*..:’ i

,d
2 .,___ ----——— ——---- ;-_.e

F -. .Z:-.:z:: .% -. .y:+x===”” :x . ..-
-- —----

1 ‘;:,,Q74.:z:?::::---------------------

0/ /

f2345678 9 10 11 12 13 14 15 16

Window Size (packets)

r FOFB

~ 8F2M

~G3MFB%

‘b- ffW RB

‘. 8F3MSS5

o 6F?M

- 4F2M

X 4F2MS85

- S&J4

Figure 12: Instruction Level Parallelism of TOMCATV

282

We also note that we have simulated models based

on the assumptions of Jouppi[2] and obtained results

similar to his published data (less than two IPC), The

primary impediments to high performance for Jouppi’s

machine are in–order execution and no speculative ex-

ecution beyond branches. In–order execution imposes

a serious limitation on performance by effectively intro-

ducing false dependencies between an instruction and

all instructions that precede it in the I–stream. Lack

of speculative execution limits the machine’s ability to

utilize parallelism to that which is within a basic block.

4,2 The RDF Machine

For each of the nine benchmarks, Figures 4 through 12,

the highest performance curve shows the performance

of a restricted dataflow machine with an issue rate of

eight instructions per cycle. This abstract machine is-

sues eight instructions each cycle regardless of instruc-

tion class, until the window is full. Functional units,

each capable of executing any type of instruction, re-

move instructions from the window out-of–order as they

complete execution. No other restrictions are placed

on execution. Branch prediction is omniscient. Clearly

this is an unrealizable machine model. However, the

simulation results provide an upper bound for machines

that approximate the RDF model with an issue rate of

eight. Note that performance approaches an asymptote

of eight IPC.

If we do not restrict window size or fetch rate, the sim-

ulator provides an absolute upper bound for that par-

ticular benchmark. This is the Unrestricted Data Flow

Machine (UDF). In this case, execution is constrained

only by true dependencies. This value, reported at the

top of each of graph, ranges from 17 to 1165 IPC and

indicates all the parallelism that exists in the program

segments traced.

4.3 The Middle Ground

4.3.1 Configurations

For each of the nine benchmarks, Figures 4 through 12,

the middle curves show the performance of a series of

machine configurations under various assumptions. The

assumptions that drove the selection of this set of ma-

chine configurations were based on a desire to pick con-

figurations that are implementable, coupled with an in-

terest in knowing the effect of better branch prediction

schemes. Consequently, each of the machine configura-

tions combines a realistic window size, issue rate, and

set of functional units with one of the following branch

predictors: 100 percent accurate, 85 percent accurate

(synthetic), and a real branch predictor.

The model of execution simulated in these experi-

ments differs from the Smith/Johnson model in that

instructions are entered and removed from the window

in issue packet units, only after all instructions in the

packet have been completed, and in the order in which

the packets were issued. This is in contrast to the

Smith/Johnson model where instructions are removed

out–of–order as soon as the instruction has completed

execution. This constraint, required by the mechanism

we chose for implementing checkpointing, reduces the

effective window size. While this is not significant for

the integer benchmarks, it impacts the performance of

the floating point benchmarks. As seen in the figures,

the Smith/Johnson machine performs better than our

machines on the floating point intensive benchmarks for

smaller window sizes because it makes more effective use

of the window.

4.3.2 Results

Four-functional-unit machines with two memory units

and either 85 percent or 100 percent branch predic-

tion accuracy are shown to demonstrate the perfor-

mance advantages of a properly balanced machine with

no prefetch buffer constraints. Performance of the ma-

chine with 100 percent branch prediction ranges from

2.7 to 2.9 IPC for the integer benchmarks and 1.5 to 2.8

IPC for the floating point benchmarks. Performance of

the machine with 85 percent branch prediction ranges

from 1.9 to 2.2 IPC (integer) to 1.4 to 2.7 IPC (floating

point).

A six-functional-unit configuration with three mem-

ory units is presented with 100 percent branch predic-

tion. Performance ranges from 3.2 to 3.6 IPC for the

integer benchmarks and from 1.8 to 5.7 for the floating

point benchmarks.

Several eight functional unit machines with three

memory units are also presented. These machines each

have different branch prediction characteristics: 100

percent synthetic, 85 percent synthetic, and real branch

prediction. The real mechanism predicts the outcome

of a branch based on the history of that branch in con-

junction with dynamically gathered branch character-

istics of the running program. Performance of these

machines suffers from the one branch per cycle limita-

tion we assumed for the issue mechanism. The average

size of basic blocks (five) limits the advantage of addi-

tional functional units. Performance ranges from ap-

proximately 2.2 to 2.9 IPC for the integer benchmarks

using 85 percent branch prediction, and from 1.6 to 5.0

for the floating point benchmarks. With the real branch

predictor, performance of between 2.4 and 3.4 (integer),

and 1.9 and 5.8 (floating point) is obtained. Because of

the significant impact of floating point latencies on the

performance of the floating point benchmarks, and the

existence of several machines with smaller latencies, we

repeated the experiment for the eight functional unit

machine using smaller latencies. With the real branch

predictor, the performance of the smaller latency ma-

283

chine ranges from 2.8 to 5.8 on the floating point bench-

marks. The performance on the integer benchmarks re-

mains unchanged.

4.3.3 Analysis

Performance, measured in instructions executed per

clock cycle, can be modeled as:

ipc=I*p*c5

where I is the maximum issue rate in instructions per

clock cycle, p is the static issue eficiency factor, and 6

is the dynamic execution efficiency factor. Both p and

6 range between zero and one inclusive.

The maximum issue rate 1 is determined by the de-

signer and establishes an upper bound on performance.

The static issue efficiency factor p is determined by the

dynamic instruction stream (which is program/data de-

pendent) and by the issue restrictions of the machine.

For example, a restriction of at most one branch per

clock cycle and no instructions issued beyond a branch

will reduce the number of instructions that can be is-

sued in a single clock below the maximum value 1 unless

the dynamic instruction stream has one branch every

1 instructions. Other restrictions, such as those caused

by functional unit conflicts (e.g., only one multiply issue

per clock due to the presence of only one multiplier) will

further reduce p. Clearly, p can be improved through

compiler assistance. A compiler for a superscalar ma-

chine could reorganize code such that issue restriction

effects are minimized. It should be emphasized that for

the results presented, no superscalar optimizations were

performed.

The effects of the static issue efficiency factor can be

clearly seen in the results by comparing the performance

levels of the RDF.18 machine to that of the 8F3M ma-

chine, The RDF machine is limited only by window

size and operation latencies. The 8F3M machine adds

issue restrictions, such as one branch per issue cycle and

only 3 memory ports. Otherwise, for any given window

size, and with the exception of retirement policy, both

machines are identical. The range for this factor is ap-

proximately .33 to .72.

The dynamic execution efficiency represents the frac-

tion of clock cycles in which instructions were effectively

issued. This is determined by four factors: instruction

pointer availability, instruction availability, branch mis-

precliction losses, and full window frequency. In a pure

RDF model, the first three factors play no part since un-

bounded instruction bandwidth and branch prediction

omniscience is assumed. In a real machine however,

these factors have a major effect on performance.

In certain circumstances, the location from which to

fetch instructions may not be known. For example, in

machine architectures which permit a jump to a location

stored in a register, the jump cannot be performed until

the register value is known. The machine must stall

issue from the time the jump is issued until the register

value is known. We define this condition as a lack of

instruction pointer availability.

Lack of instruction availability will reduce the num-

ber of instructions that can be issued. This can arise

because of instruction cache misses, memory bank con-

flicts, etc. We point out that there is a dichotomy be-

tween instruction traffic and data traffic in Von Neu-

mann machines. It is possible to buffer against data

cache misses. For example, we can allow a subsequent

memory load to access the data cache even after a prior

memory load has missed the cache (lock-up free). There

is no corresponding way to deal with instruction cache

misses. This condition was not modeled in our sinlula-

tions.

Branch misprediction effectively causes issue stalls.

From the time a mispredicted branch is issued until it

is determined that it has been mispredicted, all instruc-

tions issued after the branch must be discarded. From

the point of view of being able to retire instructions, this

is equivalent to having stalled instruction issue after the

mispredicted branch instead of predicting it. There are

two remedies for this effect. First, reduce the frequency

of misprediction by either eliminating branches or by

using a better branch prediction algorithm. Second, re-

duce the latency of branch issue to branch execute. This

has the effect of reducing the number of instructions dis-

carded after a mispredicted branch.

The effect of branch misprediction is clearly visible

in figures 4, 5, 6, 7, and 11. It is most notable in gcc

(figure 6) for the 8F3M machines: the performance of

the 8F3M machine with omniscient branch prediction is

almost 50 percent greater than the 8F3M. RB machine.

Finally, full window effects arise when instruction life-

time exceeds the window size. Instruction lifetime is

measured as the time from issuance of an instruction

into the window until it is removed from the window by

retirement. At a minimum, instruction lifetime is equal

to its latency. This time can be increased if the instruc-

tion must wait for operands after it is issued. This effect

can be minimized by either having the compiler attempt

to schedule code so that operands are likely to be avail-

able as an instruction is issued or by increasing the win-

dow size. The effect of window overflow can be seen in

figures 4-12 at small window sizes. Once the window

size increases beyond some point, other factors such as

static issue efficiency, branch misprediction losses, etc.

dominate.

However, there are code fragments for which code re-

organization or window size increases will have little ef-

fect. Consider the Livermore Loops kernel #5:

DO 10 i = 2,n

X(i)= Z(i)* (Y(i) - X(i-1))

10 CONTINUE

284

This simple recurrence relation will require at least two

loads, a floating point subtract, a floating point mul-

tiply, a store, and an increment, compare and branch:

perhaps 8 instructions per iteration. On a superscalar

degree 8 machine, it takes just one clock to issue each

iteration. However, each iteration will take a minimum

of 12 clocks to execute using the latencies given in Table

1. Since each iteration is dependent on the prior itera-

tion, a full window condition will quickly arise. For large

‘n’, the number of iterations, the machine will achieve

steady state at an issue rate of one clock out of twelve.

Inside this loop, the dynamic execution efficiency 6 is

only .08! The only remedy for such situations is to re-

duce the latencies of the executed instructions or recode

the loop. The doduc and fpppp benchmarks exhibit this

type of latency induced problem.

5 Implementation Issues

Several aspects of implementing a superscalar machine

based on RDF principles are not trivial. Among these

difficult issues are instruction delivery and multiple si-

multaneous data accesses.

Instruction delivery is the problem of determining

what instructions must be fetched, fetching them, and

delivering them to the proper function units for ex-

ecution, Aside from bandwidth issues, branches and

lmachine issue restrictions (e. g., only one floating point

multiplier issue per clock) make instruction delivery dif-

ficult. We briefly address these issues here.

Given a fetch address, the technique as proposed in

[I], that of fetching several cache lines simultaneously,

is a good way of providing the raw bandwidth necessary

to issue several instructions in one clock. For example,

for a superscalar degree four engine, assuming that each

cache line holds four instructions, fetching two sequen-

tial cache lines guarantees that four instructions can be

delivered regardless of the alignment of the fetch address

within the first cache line.

Once a group of instructions has been fetched, the

difficulty lies in quickly determining where to fetch the

next packet. Issue constraints determine how many in-

structions can be issued, and thus what the next fetch

address should be. These constraints, however, are not

resolved until after decode. Furthermore, the presence

of branches in the packet determine the end of the

packet as well as a possibly nol~–sequential next address.

The branch needs to be predicted and the branch tar-

get calculated in time to perform the next fetch. These

problems can be circumvented through the use of a

decoded instruction cache (DIC) [10, 3]. Rather than

caching undecoded instructions in an instruction cache,

an instruction packet can be predecoded and stored

in the DIC. The DIC, in addition to storing decoded

instructions, can store branch prediction information,

branch target addresses, and packet sizes.

Another implementation problem is that of providing

multiple memory accesses per machine cyc!le. We briefly

describe two techniques which can be used to provide

the necessary memory bandwidth. First, a small fully

associative cache backed by a conventional cache can

be used. The small cache would be implemented with

multiple access ports. Its small size would make the

cost of the multiple ports less prohibitive, Another or-

ganization uses one, single ported cache per memory re-

quest unit. Standard cache consistency techniques can

be used to keep the caches consistent with each other in

the presence of memory stores.

6 Concluding Remarks

This paper is only a beginning in the demonstrated vi-

ability of a single instruction stream processor capable

of delivering execution rates in excess of the two in-

structions per cycle limit stated in [1, 2]. Our simula-

tion results have shown performance up to more than

3 instructions per cycle on large integer applications on

processors that are reasonable to implement today.

Note that, in the interests of producing data that is

consistent with the software and hardware mechanisms

available today, weJave imposed limitations on the per-

formance that can be achieved. When these limita-

tions are removed, the performance of single instruction

stream processors will improve substantially.

For example, we have required that instructions be

removed from the window in whole packet increments.

Packets are removed only in the order in which the

packets were issued, and only after all instructions in

the packet have completed execution. In this way,

completed instructions consume valuable window space

while waiting to be removed. With a different imple-

mentation of checkpointing, it is possible to eliminate

this inefficiency and make better use of the window,

thus improving performance.

Second, we have assumed only one branch per cycle,

and no instructions following the branch being issued in

the same cycle with the branch. This limits the available

parallelism to the average size of a basic block. Allowing

multiple branches per cycle would increase the amount

of available parallelism.

Furthermore, our results of 2.0 to 5.8 instructions per

cycle come from a restricted data flow engine that has

a limited window size and issue rate, ccmsisteut with

what is reasonable today. As levels of integration and

bandwidth capabilities increase, window sizes and issue

rates will increase correspondingly. In the limit, our un-

bounded window size and issue rate machine (the UDF)

shows instructions per cycle in the 17 to 1165 range

While we are not suggesting that this is possible (yet),

we expect numbers well in excess of 5 instructions per

285

cycle.

Finally, and perhaps most importantly, it is worth

re-emphasizing that all of our results have been ob-

tained using compilers not optimized for superscalar is-

sue. With architecture-specific compiler assistance to

perform code motion to provide higher issue density,

performance can be expected to increase further. With

compiler support to produce larger granularity execu-

tion units [12], performance should increase still further.

The bottom line is that processors can be imple-

mented today that deliver more than twice the perfor-

mance suggested in [1, 2], and the limits to what will be

deliverable tomorrow by single instruction stream pro-

cessors is still an open question.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M.D. Smith, M. Johnson, and M.A. Horowitz,

“Limits on Multiple Instruction Issue”, Proceedings

of the Third International Conference on Architec-

tural Support for Programming Languages and Op-

erating Systems, (April 1989), pp.290-302.

N.P. Jouppi, and D. Wall, “Available Instruction-

Level Parallelism for Superscalar and Super-

pipelined Machines.”, Proceedings of the Third In-

ternational Conference on Architectural Support

for Programming Languages a%d Operating Sys-

tems, (April 1989), pp.272-282.

Y.N. Patt, W. Hwu, and M. Shebanow, “HPS, A

New Microarchitecture: Rationale and Introduc-

tion.”, Proceedings of the 18th Annual Workshop

on Microprogramming, (December 1985), pp.103-

108.

Y.N. Patt, W. Hwu, and M. Shebanow, “Critical

Issues Regarding HPS, A High Performance Mi-

croarchitecture.”, Proceedings of the 18th Annual

Workshop on Microprogramming, (December 1985),

PP.109-116.

Y.N. Patt, and W. Hwu, “HPSm, a High Per-

formance Restricted Data Flow Architecture Hav-

ing Minimal Functionality.”, Proceedings of the

13th Annunal Symposium on computer Architec-

ture, (June 1986), pp.297-307.

W.W. Hwu and Y.N. Patt, W%eckpoint Repair for

Out-of-order Execution Machines”, IEEE Trans-

actions on Computers, (December 1987), pp.1496-

1514.

W.M. Johnson, “Super-Scalar Processor Design”,

Technical Report No. CSL-TR-89-383, Stanford

University, (June 1989).

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Norman P. Jouppi, “The Nonuniform Distribution

of Instruction-Level and Machine Parallelism and

Its Effect on Performance”, IEEE Transactions

on Computers, Vol. 38, No. 12, (December 1989),

pp.1645-1658.

G. S. Sohi and S. Vajaperyam, “Instruction Issue

Logic for High-Performance Interuptable Pipelined

Processors.”, Proceedings of the ldth Annual Sym-

posium on Computer Architecture, (June 1987), pp.

27-34.

D. R. Ditzel, A. D. Berenbaum and H.R. McLellan,

“The Hardware Architecture of the CRISP Micro-

processor.”, Proceedings of the l./th Annual Sympo-

sium on Computer Architecture, (June 1987), pp.

309-319.

Tse–Yu Yeh, “Adaptive Training Branch Predic-

tion “, Technical Report, University of Michigan,

(1991).

Steve Melvin and Yale Patt, “Exploiting Fine-

Grained Parallelism Through Combined Hard-

ware and Software Techniques”, Proceedings of the

18th Annual Symposium on Computer Architec-

ture, (May 1991)

Robert Colwell, Robert Nix, John O ‘Donnell,

David Papworth, and Paul Rodman, “A VLIW Ar-

chitecture for a Trace Scheduling Compiler.”, IEEE

Transactions on computers , (August 1988), 967-

979.

Alexandru Nicolau and Joseph Fisher, “Measuring

the Parallelism Available for Very Long Instruction

Word Architectures”, IEEE Transactions on com-

puters C-33, 11, (November 1984), 968-976.

Edward M. Riseman and Caxton C. Foster, “The

Inhibition of Potential Parallelism by Condition

Jumps.”, IEEE Transactions on computers C-21,

12, (December 1972), 1405-1411.

D. J. Kuck, Y. Muraoka, and S–C. Chen, “On

the Number of Operations Simultaneously Exe-

cutable in Fortran–Like Programs and Their Re-

sulting Speedup”, IEEE Transactions on comput-

ers C-21, 12, (December 1972), 1293-1310.

G. S. Tjaden and M. J. Flynn, “Detection and

Parallel Execution of Independent Instructions”,

IEEE Transactions on computers C-19, 10, (Oc-

tober 1970), 889-895.

286

