
Enabling Ahead Prediction with Practical Energy Constraints
Lingzhe(Chester) Cai

UT Austin
Austin, TX, USA

chestercai@utexas.edu

Aniket Deshmukh
UT Austin

Austin, TX, USA
a.deshmukh@utexas.edu

Yale Patt
UT Austin

Austin, TX, USA
patt@ece.utexas.edu

Abstract
Accurate branch predictors require multiple cycles to produce a
prediction, and that latency hurts processor performance. "Ahead
prediction" solves the performance problem by starting the predic-
tion early. Unfortunately, this means making the prediction without
the directions of the N branches between when the prediction starts
and when the relevant branch’s prediction is needed. The energy
required to consider all 2𝑛 possible cases increases by 14.6x, mak-
ing ahead prediction not viable. This paper shows that most of
the intermediate branch directions never materialize, reducing the
number of observed missing history patterns significantly (usually,
only one or two). We modified the TAGE predictor to eliminate
those branches from having to be considered. The result, our ahead
predictor can produce a performance benefit of 4.4%, while causing
an increase in energy consumption of only 1.5x, far less than the
14.6x that was thought to be necessary, and very much viable.

CCS Concepts
• Computer systems organization → Superscalar architec-
tures; Pipeline computing.

Keywords
CPU architecture, Branch Prediction
ACM Reference Format:
Lingzhe(Chester) Cai, Aniket Deshmukh, and Yale Patt. 2025. Enabling
Ahead Prediction with Practical Energy Constraints. In Proceedings of the
52nd Annual International Symposium on Computer Architecture (ISCA ’25),
June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3695053.3730998

1 Introduction
Branch prediction remains an important bottleneck for single-
thread performance. Highly accurate predictors ensure correct path
instructions are sent to the processor backend. Decades of research
have focused on predictor accuracy, resulting in increasingly larger
storage overheads and more complex logic. This improves accu-
racy but leads to multi-cycle predictor lookup latency, significantly
decreasing the overall throughput of the predictor.

To reduce the impact of this latency problem while maintaining
high accuracy, industry uses multi-level branch prediction [2, 13,
17, 33]. A small predictor generates a prediction within the first
cycle, but a larger and more accurate predictor may override that

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3730998

prediction in the next few cycles. While this design provides the
high accuracy of a large predictor, it only provides the low latency
of a small predictor when it agrees with the overriding predictor.
Each disagreement between the two effectively stalls the prediction
pipeline and adversely affects performance.

Figure 1: Performance Impact of BP Latency

Fig. 1 shows the impact of overriding predictor latency on pro-
cessor performance in SPEC CPU2017 [4] benchmarks. We use a
1K-entry PC-tagged 2-bit saturating counters as the single cycle
predictor and TAGE as the main predictor (the size of TAGE is fixed
for all latencies in this study). A prediction packet is generated
every cycle unless there is a disagreement between TAGE and the
single cycle predictor. The IPC is normalized to a baseline with
a 3-cycle overriding predictor. A latency of 1 means that TAGE’s
prediction is available at the end of the first cycle and used as the
single-cycle predictor. Completely removing the predictor latency
can provide a 6.48% IPC improvement. Each additional cycle of
predictor latency decreases the overall performance by 2.5%.

Ahead prediction [14, 16, 26, 28, 29, 40, 41] has long been pro-
posed as a solution to the predictor latency problem. Instead of
using the history and PC at the current branch to predict the cur-
rent branch, ahead prediction uses the history and PC available now
to skip ahead and predict a future branch. This allows the prediction
to be initiated earlier which hides the multi-cycle predictor latency.
Skipping history can reduce prediction accuracy, and thus prior
work [19, 37, 38] preemptively generates multiple predictions by
reading out consecutive entries from the prediction table(s). Each
prediction corresponds to one of the possible missing history pat-
terns, and the final prediction is picked when the missing history is
available. This increases the energy required per prediction signifi-
cantly because exponentially more bits need to be read out of the
prediction tables as the ahead distance increases. The design sug-
gested in [38] increases the number of bits read out per prediction
by 32x when predicting 5 branches ahead, which is necessary to
hide the latency of 3 cycles. This increases per-prediction energy
by 14.6x, making it infeasible to build as the directional branch
predictor uses around 3-4% of the total core power [5, 6, 32].

https://orcid.org/0009-0002-9646-395X
https://orcid.org/0009-0007-6393-6139
https://orcid.org/0009-0004-8704-8249
https://doi.org/10.1145/3695053.3730998
https://doi.org/10.1145/3695053.3730998
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3730998


ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

Our work proposes a feasible ahead predictor design that does
not incur a high energy cost. Specifically:

• We show experimentally and analytically that the number of
missing history patterns observed during program runtime
is far less than the theoretical maximum.

• Using this insight, we propose an efficient ahead predictor de-
sign that explicitly tags each counter with its corresponding
missing history.

• The per-prediction energy of our predictor scales linearly
with ahead distance. We can hide the full predictor latency
with only a 1.5x increase in per-prediction energy compared
to prior designs that scale exponentially and require 14.6x
more energy per-prediction.

The rest of the paper is organized as follows: Sec. 2 provides the
necessary background. Sec. 3 provides an analysis of the number
of missing history patterns. Sec. 4 provides an overview of our
prediction scheme. Sec. 5 covers other implementation details. Sec. 6
provides a detailed evaluation of our design.

2 Background
2.1 Branch Prediction
Branch prediction algorithms exploit the correlation between the
control flow leading up to a branch and its direction [7, 12]. These
correlations can come from program control/data flow or the in-
herent correlation in program data. The two-level predictor [45]
and its variants[27] assign a saturating counter for each control
flow leading up to a branch. This captures the majority direction
of this branch under the corresponding control flow. TAGE [42]
improves upon this by trying to identify the shortest history length
required to capture the majority direction of the branch and explic-
itly tagging each counter with its corresponding control flow. A
branch is unpredictable if it does not exhibit stable behavior (i.e.,
does not have a majority direction) under the longest history sup-
ported by the predictor. For the rest of the paper, we will refer to
predictable branches as branches that exhibit stable behavior un-
der a specific control flow and unpredictable branches as branches
that do not exhibit stable behavior under a specific control flow.
Note that a branch can be predictable under some control flows but
unpredictable under other control flows.

2.2 Branch Predictor Latency
Branch predictors use lookup tables to identify the correlation be-
tween the control flow leading up to a branch and its direction. As
branches in the program seemany control flow patterns, large tables
are necessary to capture all of them and provide high-accuracy pre-
dictions. For the current state-of-the-art predictor, TAGE-SC-L [39],
a 64KB version achieves 25.3% fewer mispredictions compared to
a 8 KB TAGE-SC-L. In terms of logic complexity, the initial two-
level [45] predictor design with a global history and a global pattern
history table only required a single table lookup, but modern pre-
dictors like TAGE require hashing, table look-ups, and a complex
selection function to generate the final prediction. Perceptron-based
predictors [18, 21] require table look-ups and a dot product compu-
tation for the final prediction. A recent proposal [46] even uses a
small on-chip CNN inference engine to generate predictions. Both

large storage and complex logic provide higher accuracy but in-
crease predictor latencies.

2.3 Multi-Level Prediction
Pipelining predictors is challenging because the prediction of the
current branch depends on the prediction of the preceding branch.
Predictors use the current branch’s PC and history as inputs, which
are only available after the previous prediction is generated. Indus-
try products [2, 13, 17, 33] solve this problem with a multi-level
prediction scheme. A simple single-cycle predictor allows the next
prediction to start on the next cycle. This is supported by an over-
riding predictor that is larger and has a longer latency but is more
accurate. Both predictors start in the same cycle, but the overriding
predictor’s result arrives a few cycles later. This result is compared
against the single-cycle prediction. On a disagreement, it overrides
the single-cycle prediction via an early flush. Each early flush ef-
fectively stalls the prediction pipeline for N-1 cycles, where N is
the latency of the overriding predictor. The single-cycle predictors
are usually extremely simple due to timing constraints and are,
therefore, significantly less accurate than the overriding predictor.
Our experiments show that a 1K-entry PC tagged 2-bit counter
has 10.8x more mispredictions across the SPEC CPU2017 bench-
marks compared to a 64KB TAGE-SC-L on average and can have
1000x more mispredictions in the worst case. Frequent early flushes
significantly limit the prediction throughput and hurt performance.

Multi-level predictor schemes also limit scaling in two ways.
First, the storage budget of the overriding predictor is hard to scale
as it increases predictor latency. The performance degradation from
the increased latency often outweighs the performance improve-
ment from having a larger predictor. Specifically, doubling the
predictor size to 128KB leads to a 0.07 Misses-Per-Kilo-Instruction
(MPKI) reduction across all of SPEC benchmarks but decreases IPC
by 1.4%1. Even for the two benchmarks most sensitive to predictor
capacity, gcc and leela (with an MPKI reduction of 0.21 and 0.50,
respectively), performance decreases by 0.1% for gcc and only in-
creases by 0.9% for leela. Second, a multi-level predictor scheme
limits the predictor throughput because a longer predictor latency
increases the number of cycles where the predictor is stalled. This
decreases the effectiveness of a wider frontend, which is critical for
high performance.

2.4 Baseline
Our baseline features a two-level predictor. The single-cycle predic-
tor in our baseline is coupled with a single-cycle BTB. The two are
implemented in one table containing 1K entries (4-way set associa-
tive cache). An entry for a branch in this table contains its target
and a two-bit counter used for predicting its direction. We model
the throughput of an aggressive frontend that can predict up to the
first taken branch or 16 instructions per cycle. There are no limi-
tations on the number of not-taken branches predicted per cycle.
The fetch unit can fetch up to 16 instructions per cycle from the
I-cache and does not break on cache-line boundaries. The baseline
has a decoupled frontend that can buffer up to 8 prediction packets.
The parameters for our baseline are summarized in Section 6.1

1Assuming doubling the predictor size increases predictor latency by 1



Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 2: Number of Patterns Under Control Flow

2.5 Decoupled Frontend
While the decoupled frontend[35] was originally proposed for in-
struction prefetching, it also hides the predictor latency if the pre-
dictor runs sufficiently ahead of fetch. It uses a queue between the
Branch Prediction and Fetch stages to buffer fetch addresses gen-
erated by the Branch Predictor. This is commonly called the Fetch
Queue. If the predictor is running far enough ahead to buffer multi-
ple fetch addresses in the Fetch Queue, a flush from the overriding
predictor does not stall the rest of the frontend.

However, when there are not enough entries in the fetch queue,
the decoupled frontend cannot hide the latency of the main predic-
tor. Our experiments show that 11.14% of the total number of early
flushes are not completely hidden by the decoupled frontend and
terminate a fetch packet early. The following 3 scenarios can cause
this:

• After a backend redirect, the fetch queue is flushed and thus
empty. During the next few cycles, any delay in the pre-
diction pipeline is exposed to the fetch unit and adversely
affects performance.

• When the program is in a region with a high misprediction
rate from the single cycle predictor, the queue can become
empty due to overriding predictor flushes. Even if the fetch
queue is full the rest of the time, these regions with fre-
quent flushes limit how fast instructions are delivered to the
processor backend, hurting performance.

• When the program is in a region with a high taken branch
density, the predictor cannot operate at peak bandwidth.
This limits predictor bandwidth, making it hard to fill the
fetch queue.

2.6 Ahead Prediction
Ahead prediction breaks the dependency between consecutive
branches by using the current PC and history to predict a future
branch. This technique hides the prediction latency, as the predic-
tion of the future branch is not needed until a few cycles later. The
number of branches skipped is called the ahead distance. However,



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

ahead prediction hurts prediction accuracy as the same ahead his-
tory and PC could lead to multiple branches,2 making it hard to
know which one the prediction is for.

To mitigate the accuracy loss, prior work generates multiple pre-
dictions, one for each possible path. Given N branches are skipped,
there are 2𝑁 possible missing history patterns since each branch
can be either taken or not taken. When the prediction is finally
needed, the missing history (available after all the intermediate
branches are predicted) is used to select which of the 2𝑁 predic-
tions to use. While prior work successfully hides the prediction
latency with minimum loss of accuracy, they incorrectly assume
that all the missing history patterns are likely to be seen and thus
generate 2𝑁 predictions.

This design is impractical for ahead distances greater than one.
Experimental results show that an ahead distance of 5 is necessary
to cover the entire prediction latency (since, on average, more than
one branch is fetched per cycle). A normal TAGE predictor reads out
from the bimodal table, 6 short history tables with 12-bit entries, and
15 long history tables with 16-bit entries, resulting in 314 bits total
for each prediction; however, its ahead version based on the design
suggested by Seznec [38] would need to read out 10,048 (32x314)
bits per prediction (for an ahead distance of 5). Our analysis shows
that covering the entire prediction latency incurs a 14.6x predictor
energy overhead based on this design.

Furthermore, the problem worsens as the need to increase pre-
dictor capacity continues to grow to fit the current code footprint,
which increases predictor latency and would require larger ahead
distances. Because this design reads out exponentially more bits
per prediction as ahead distance increases, per-prediction energy
also increases exponentially. While it might be possible to use this
design to hide 1 cycle of latency, hiding the full prediction latency
is impractical as the branch predictor contributes to a significant
proportion (3-4%) of the core power.

3 Number of Missing History Patterns
While prior work starts with the assumption that every missing
history pattern needs to be considered, we start by asking the
question: How many missing history patterns are observed at
program runtime for a specific ahead history and PC? If the
number of patterns is small, we can leverage this fact to implement
an efficient ahead predictor.

3.1 Experimental Results
We examine the benchmarks in the SPEC CPU2017 suite to answer
the above question. For each branch on the correct path, we collect
the control flow leading up to the branch and PC, along with the
PC of the next 5 branches3. The control flow is captured via a
global history register similar to the one used in the 2-level branch
predictor[45]. The history and PC pair represent the ahead history
and PC in our experiment. The sequence of the next 5 branches
represents the missing history patterns observed. For each distinct
control flow, we count the number of unique patterns for the next

2or the same static branch but with different missing history
3we chose 5 branches for this experiment as this is the ahead distance used in our
design

Figure 3: Control Flow Example A and B

5 branches. We use no history, 32 bits of history, and 64 bits of
history, as shown in Fig. 2.

There are 32 (25) possible paths for the next 5 branches, assuming
they are direct conditional branches. However, significantly fewer
patterns are observed in our experiment. We note a few important
observations:

First, even when no history is used, the number of patterns
observed is far less than the theoretical maximum. This is because
some branches are inherently biased towards taken or not taken
during a phase of execution or the entire program runtime.

Second, using history can drastically reduce the number of
patterns observed. When no history is used, more than 4 patterns
are observed 35.9% of the time on average. But when 64 bits of
history are used, we observe more than 4 patterns only 1.48% of
the time.

Third, benchmarks with high MPKI exhibit more patterns com-
pared to benchmarks with low MPKI. Mcf, deepsjeng, leela, and
xz come under this category. This is because the predictability of
intermediate branches determines how many patterns are seen, as
discussed in the following section.

3.2 Predictable Intermediate Branches
Consider the example with 3 branches, 𝐵𝑟0, 𝐵𝑟1𝑎 , and 𝐵𝑟1𝑏 pictured
in Fig. 3-A. 𝐵𝑟0 is predictable under control flow X. Thus, every
time the program reaches 𝐵𝑟0 under control flow X, 𝐵𝑟0 always
leads to 𝐵𝑟1𝑎 . Only one path is possible going forward from control
flow X.

Now consider the same example, but with multiple branches, 𝐵𝑟0
to 𝐵𝑟𝑁 . If all the intermediate branches are easy to predict under
control flow X, for each 𝐵𝑟𝑖 where 0 ≤ 𝑖 < 𝑁 , the next branch
will always be 𝐵𝑟𝑖 + 1. Thus, after each branch, there is only one
path going forward. By repeating this process, we see that there
is only 1 possible pattern after control flow X as long as all the
intermediate branches are predictable with control flow X. With
longer history lengths, more branches become predictable. This
increases the number of cases where only very few patterns are
observed when a longer history is used. Thus, we see only one
pattern for more than 70% of the control flows when 64 bits of
history are used, as shown in Fig. 2.

However, if there are unpredictable branches among the inter-
mediate branches 𝐵𝑟𝑖 (0 ≤ 𝑖 < 𝑁 ), the control flow does not always



Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

reach 𝐵𝑟𝑁 . Each additional unpredictable branch increases the num-
ber of possible patterns. This is why benchmarks with high branch
MPKI have more patterns, as seen in Fig. 2.

3.3 Tying Everything Together
Fundamentally, most predictors work by assigning a saturating
counter to each control flow leading up to a branch. At the time
of prediction, the predictor looks for the counter assigned to the
current control flow. As stated above, when the next N branches
are all predictable, the current control flow only leads to one path,
resulting in only one control flow N branches later. Thus, the pre-
diction accuracy stays the same whether we use ahead history or
current history. This can be achieved by training the counter at-
tached to the ahead history with the direction of the branch we
wish to predict. However, if an unpredictable branch is skipped,
prediction accuracy drops significantly.

Assume we arrive at 𝐵𝑟0 under a different control flow Y that
makes 𝐵𝑟0 unpredictable. In this case, then both 𝐵𝑟1𝑎 and 𝐵𝑟1𝑏 are
possible targets of 𝐵𝑟0 under control flow Y, as shown in Fig. 3-B.
If ahead prediction with ahead distance of 1 is used here (using the
PC and history at 𝐵𝑟0 to predict the next branch), the prediction
counter associated with the control flow Y is trained by both 𝐵𝑟1𝑎
and 𝐵𝑟1𝑏 . If 𝐵𝑟1𝑎 and 𝐵𝑟1𝑏 go in the opposite direction, then both
become unpredictable with the history at 𝐵𝑟0 even though 𝐵𝑟1𝑎
and 𝐵𝑟1𝑏 could be very easily predicted with current history (which
contains the direction of 𝐵𝑟0).

Unlike other forms of aliasing in branch prediction that come
from the history folding mechanism and the hashing function, this
form of aliasing comes from inadequate information in the ahead
history. In summary, ahead prediction works when only predictable
branches are skipped. When unpredictable branches are skipped,
the predictor cannot identify which path it is on, adding additional
aliasing to the predictor. To remove the aliasing, the predictor must
use the information missing from the ahead history, which we will
refer to as missing history.

In the benchmarks we evaluated, most branches tend to be pre-
dictable. As seen in Fig. 2, 71% of control flows only lead to 1 path
after skipping 5 branches as the skipped branches tend to be pre-
dictable. More than 4 patterns are seen when the missing history
contains multiple unpredictable branches, but this is rare (1%). We
use this insight to drive our ahead predictor design.

4 Designing an Efficient Ahead Predictor
Similar to prior work [19, 38], we generate multiple predictions
from the ahead history and pick between them using the missing
history. However, unlike prior work that accounts for all possible
missing history patterns, we take advantage of the fact that only a
few paths show up at runtime. We take note of two TAGE charac-
teristics: 1) TAGE internally already reads out multiple counters,
one from each history length, and 2) TAGE handles conflicts during
allocation between different counters in the same table by promot-
ing the allocation to a higher history. We use these 2 characteristics
by distributing entries corresponding to different missing history
patterns across different TAGE tables. We identify the missing his-
tory pattern that a counter belongs to with an additional tag field,
the secondary tag. Fig. 4 shows the layout of a TAGE entry in our

new design. Note that T0 (the bimodal table inside TAGE) remains
untagged.

Figure 4: TAGE Entry with Secondary Tag

TAGE generates an index and a tag for each history length based
on the PC and history. The selection logic picks the prediction from
the matching table with the longest4 history. In our design, the
index and the primary tag are computed with the ahead history and
ahead PC. A matching primary tag indicates the counter is intended
for one of the previously observed missing history patterns under
that ahead history. A mismatch in the main tag means the entry
corresponds to a different ahead history and should be ignored. Our
ahead predictor reads out one counter per table, similar to baseline
TAGE. We duplicate the selection logic to identify the longest(or
the second longest) matching counter for each possible value of
the secondary tag in parallel. If no primary tag match is found,
the prediction from T0 table is used. When the prediction is finally
needed, the secondary tag is computed based on a hash of the miss-
ing history and is used to pick the final prediction. The secondary
tag width determines the number of patterns our predictor can
distinguish and is independent of the ahead distance.

Even though we duplicate the selection logic and generate mul-
tiple predictions, the number of bits read out from each table only
increases by the width of the secondary tag. This number is far less
than prior work[38] and does not increase exponentially with the
ahead distance.

Our ahead predictor design is shown in Fig. 5. It includes 26
history lengths (T0 through T25) similar to baseline TAGE. We use
a 5-bit secondary tag as our design uses an ahead distance of 5 to
cover a 3-cycle prediction latency. The next paragraph shows an
example to help outline the prediction process.

4.1 Predicting a Branch: An Example
Given a particular ahead history, the predictor generates indices
corresponding to the entries highlighted in red in Fig. 5. These
entries are then read out and a tag comparison is performed. In the
figure, there are 3 hits (based on the primary tag) in tables T1, T2,
and T21. These entries correspond to different missing histories
(secondary tags 1 and 31). The selection logic for each missing
history value remains the same as baseline TAGE. For example, the
selection logic for missing history 1 only sees a hit for the counter
at T2 and generates a prediction based on its value. Similarly, the
selection logic for missing history 31 sees hits in tables T1 and T24.
The rest of the selection logic groups see no table hits and use the
prediction supplied by the bimodal table (T0). Note that even though
the entry out of T3 has a missing history tag of 5, a mismatch in the
primary tag indicates that the entry is not meant for the current
control flow and should be ignored. Once the intermediate branches
are resolved, we compute a hash based on the direction and target of
the intermediate branches. This is the secondary tag for the branch
we are predicting and determines the final prediction.
4or second longest if alt-pred is used



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

Figure 5: Ahead 2-Tag TAGE Prediction Example

4.2 Selection Function/Secondary Tag
Prior work uses the directional history of the missing branches to
pick between the generated predictions. For example, if the two
missing branches were TAKEN, NOT TAKEN, then the secondary
tag would be 10. This approach, however, has two major short-
comings. First, it cannot handle indirect branches as they could
have multiple different targets but always a taken direction. Second,
using the direction directly couples the length of the secondary tag
with the ahead distance and makes it difficult to increase the ahead
distance. We solve these problems by hashing together the targets
of the missing branches. The generated hash length is independent
of the ahead distance and allows increasing the ahead distance with-
out increasing tag width (see Section 6.3). In fact even using 1 bit
of tag is enough to provide 2.2% performance and incurs only
20% of the corresponding area and energy overhead compared
to using a 5-bit secondary tag.

The selection function is computed based on the algorithm de-
scribed in Fig. 6 and does not depend on any of the TAGE outputs
for the current prediction. It is implemented as a regular 32-to-1
MUX (unlike the priority MUX logic at the end of TAGE). This re-
sults in lower latency and can be done in a single cycle. A software
implementation of our hash function is described below.

4.3 Updating the Predictor
When a branch resolves, it follows the baseline TAGE update al-
gorithm to update the counter and the usefulness bit based on the
entries that provided the prediction. If an allocation is required,
we again follow the baseline algorithm to find an existing entry

Figure 6: Missing History Hash Algorithm

to replace. The allocated entry is populated with the appropriate
secondary tag to its corresponding value. Note that if a branch
wants to allocate to an entry already containing a useful entry with
the same primary tag but a different secondary tag (i.e., a different
pattern corresponding to the same ahead history), the allocation is
promoted to the next table. This follows the same algorithm that
TAGE uses when dealing with conflicts.

4.4 The Importance of Having Few Patterns
Baseline TAGE relies on its allocation algorithm to place each
counter in the table best suited for that branch (based on the his-
tory length required to predict that branch). During an allocation
conflict, TAGE takes advantage of the fact that each table uses a dif-
ferent history length to compute the index. Since the histories used
are different for each table, entries that conflict in one table are
unlikely to conflict in other tables. This allows TAGE to mini-
mize conflicts across the tables. In our design, indices are calculated
using the ahead history and PC. This forces counters with the same
ahead history but different missing history patterns to always use
the same input to compute the indices for every table. As a result,



Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

they always conflict with each other in every table because they
all have the same index for each table. The conflicts in allocations
force these counters to reside in different tables. However, if there
are too many patterns, these counters may experience many unnec-
essary promotions to a higher history, even if they could easily be
predicted from a lower table using a shorter history. This increases
the capacity pressure on the higher histories and hurts accuracy.
However, because there are only a few (<3) patterns most of the
time (97%), these conflicts are minimized and do not significantly
impact prediction accuracy.

We compare the prediction accuracy of branches in our ahead
predictor with baseline TAGE. We categorize each branch based
on the number of missing history patterns its corresponding ahead
history observes, and the results are shown in Table 1. This shows
that branches with only a fewmissing history patterns (1-3) see very
little degradation in accuracywith our ahead predictor. For branches
with more patterns (>3), the accuracy drop is more significant due
to the additional conflicts as explained above. However, since this
is rare, its impact on overall accuracy is small: for all branches, our
ahead predictor only decreases the prediction accuracy by 0.067%
compared to the baseline TAGE.

Number of Missing 1-3 4-6 7 and above Overall
History Patterns (All Branches)
Misprediction 0.065% 0.15% 0.16% 0.067%
Rate Delta

Table 1: Accuracy Diff between Ahead Predictor and Baseline

4.5 Energy Comparison against Prior Work
The main difference between our predictor design and prior ap-
proaches is that we generate multiple predictions under the same
ahead history more efficiently. Prior work generates predictions by
reading consecutive entries out of each prediction table, leading
to a drastic increase in the number of bits read out per prediction.
This increases exponentially with the ahead distance, making it
infeasible to implement for large ahead distances. Our design reads
out one entry per table, but each entry contains a few more bits.
These bits correspond to the secondary tag which scales linearly
with ahead distance.

Both our design and prior work require duplicating the selection
logic with each possible missing history value. Since the selection
only involves comparators, MUXes, and reading from the small alt-
pred table (16 entries), the energy required from this is significantly
less than the table reads. Thus we approximate the energy required
per prediction by measuring the energy of the table reads.

TAGE table reads account for the majority of the energy con-
sumed per prediction. The number of bits read out is directly corre-
lated with the energy needed to access the prediction tables. Thus,
the energy consumption of our design increases linearly with the
ahead distance while the energy of prior work[38] increases ex-
ponentially. We use Cacti[30] to simulate the energy required for
each prediction. The baseline model consists of a bimodal table
(8K entries with a 2-bit port), 6 short history tables (1K entries
with a 12-bit port), and 15 long history tables (1K entries with a

16-bit port). As ahead distance increases, prior work would double
port sizes in each table. In our ahead predictor, as ahead distance
increases, the port size only increases by 1 in each table (except for
the bimodal table). Fig. 7 shows the per-prediction energy (normal-
ized to baseline TAGE) required for different ahead distances. The
numbers show that the scaling is much better for our design which
makes it practical to implement even for large ahead distances.

Figure 7: Normalized Energy vs. Ahead Distance

5 Integration with Core

Figure 8: Prediction Timing Diagram

Fig. 8 shows the timing diagram for predicting Branch N. Cycle 0
is when the PC and full history of branch N becomes available and
when the prediction of Branch N is needed. The ahead predictor
starts predicting branch N several cycles earlier, using the PC and
history of Branch 0, where N is the ahead distance. This prediction
(in most cases) becomes available in cycle 0. In cycle 0, the PC of
branch N is used to access both the single-cycle BTB and the multi-
cycle BTB for the target of Branch N. The target from the single-
cycle BTB and the ahead prediction results are used to determine
the next fetch address. On a single-cycle BTB miss, the branch is
assumed not-taken until the multi-cycle BTB access is completed,
and a late flush is issued if the prediction was taken. Note that the
single-cycle BTB and multi-cycle BTB use the current PC (PC of
branch N), thus are not ahead pipelined and operate identically to
the baseline.

Fig. 9 shows the ahead prediction pipeline. The ahead predictor
uses the current PC and current history to generate a prediction
for the branch exactly N ahead (branch N is predicted with the PC
and control flow at branch 0). The ahead predictor generates 2𝑀



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

Figure 9: Prediction Pipeline

predictions (for an M-bit secondary tag), which are saved to the
prediction queue after 2 cycles.

The prediction queue entry is read out when the PC reaches
branch N. At this point, intermediate branches have been predicted,
and their directions are used to pick the final prediction for branch
N among the 2𝑀 predictions.

5.1 Single-Cycle Override
Both prior work[38] and our design suffer from counter duplication
for branches that could have been accurately predicted with a short
history (less than the ahead distance). For example, in a baseline
non-ahead pipelined TAGE, if a branch is biased to be either taken
or not taken, a single entry in table T0 can accurately predict the
branch. However, when the predictor is ahead-pipelined, a counter
is needed for each of the possible ahead histories that lead to this
branch. If there are multiple control flows that lead to this branch,
multiple counters are needed, making the branch much harder to
predict. We mitigate this problem by keeping the baseline single-
cycle predictor: the 2-bit counter in each entry of the single cycle
BTB. This predictor helps deal with these branches as it only uses
the current branch PC to generate its prediction. We allow predic-
tions from the single cycle predictor to override the ahead predictor
if they are more confident.

A 3-bit counter per branch in the single-cycle predictor is used
to track the usefulness of the predictor entry. The counter is incre-
mented when the bi-modal prediction is correct and the ahead pre-
diction is wrong. The counter is decremented when the ahead pre-
dictor is correct and the bi-modal predictor is wrong. The counter
stays the same if they are both correct or both incorrect. The coun-
ters are updated when the branch retires. If the counter value is over
a threshold of 2, the ahead prediction is ignored and single-cycle
prediction is used. Overall, this provides a 1% performance benefit
across all of SPEC benchmarks.

5.2 Prediction Queue Management
The prediction queue buffers all the predictions generated by the
ahead predictor. It is implemented as a circular buffer. Each entry
in the prediction queue has one ready bit and one bit for each
prediction generated (33 bits total for a secondary tag width of 5, 1
bit for the valid bit, 1 bit for each of the possible 25 secondary tag
values). An entry is allocated to this queue with ready bit set to zero.
The ahead predictor populates the predictions in that entry when
generated, and sets the ready bit to one. The prediction queue is
controlled with three pointers: an allocation pointer, a read pointer,
and a write pointer. Predictions are read out of the entry pointed to
by the read pointer when the branch that needs these predictions
is seen. This also increments the read pointer by 1. At the same
time, the prediction for a future branch is started and a new entry
is allocated in the prediction queue. This increments the allocation
pointer by 1. When the predictions from TAGE are ready, they are
recorded in the entry pointed by the write pointer. This action also
sets the ready bit, and increments the write pointer.

Note that when the machine starts, the first N branches do not
have predictions from the ahead predictor where N is the num-
ber of branches skipped. To account for this, the read pointer is
initialized to 0, the write and allocation pointer are initialized to
N-1. The size of the prediction queue is the sum of the maximum
number of in-flight branches and ahead distance. This guarantees
that the prediction queue never overflows and does not introduce
any additional stalls.

5.3 Late Predictions
Modern processors predict up to the first taken branch per cycle,
thus the exact number of branches that are seen in 3 cycles is not
fixed. Although an ahead distance of 5 branches covers 3 cycle
latency most of the time, it is possible for a prediction to arrive
late. In the event that a prediction arrives later than it is needed,
the result from the single-cycle predictor is used. When the ahead
prediction becomes available, we compare it against the single-cycle
prediction. If this prediction agrees with the bi-modal prediction,
then no further action is needed. Otherwise, the predictor can issue
an early pipeline flush, and the prediction pipeline can start from
the new address on the following cycle. Alternatively, a simpler but
less performant design can be done by always stalling the prediction
pipeline when the ahead predictor is late. This provides 2.4% of IPC
improvement.

5.4 Prediction Pipeline Restart
Our design handles misprediction flushes by manipulating the read,
write, and allocation pointers to the prediction queue. For each
branch, we checkpoint the read and allocation pointers at the time
of prediction. If this branch is mispredicted, the allocation pointer
and read pointer are moved to their respective checkpointed values
plus 1. The new write pointer is set to be the same as the allocation
pointer since all prior predictions have finished by then. By doing
so, all entries in the prediction queue where the predictions are
made with ahead history containing the mispredicted branch are
effectively removed (as the mispredicted branch only shows up
in the ahead history 5 branches later). Notice that after the flush,
there 4 predictions after the mispredicting branch remaining in the



Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

queue. These predictions were made with an ahead history that did
not contain the mispredicted branch.

Similar to prior work [38], our predictor does not incur any extra
misprediction penalty and can start immediately after a mispre-
diction flush. The main idea here is that the predictions for the
branches on the new paths are already computed via the ahead
history before the misprediction as they do not use the direction of
the mispredicted branch. By simply buffering up the predictions (1
bit per missing history pattern value per branch) until the branch
they were intended for retires, we achieve high prediction accuracy
right after a pipeline flush at minimum overhead.

Fig. 10 shows what happens if 𝐵𝑟𝑋 is mispredicted by our ahead
predictor. We show the state of the prediction queue when 𝐵𝑟𝑋
enters the prediction pipeline, when the misprediction is detected,
and after the recovery is finished. Notice that after the recovery,
the prediction for 𝐵𝑟𝑋+1 still remains in the prediction queue and
can be read out immediately. Note that while the relative positions
of the read pointer and the alloc pointer are always separated by
the ahead distance, the write pointer can be anywhere between
the read pointer and the alloc pointer depending on the number of
branches encountered per cycle.

Figure 10: Prediction Queue Recovery Example

5.5 Critical Path Analysis
In the cycle when a prediction is needed, an entry is read out from
the prediction queue and the selection logic picks the final predic-
tion. Unlike the TAGE internal selection logic, our final selection
logic does not depend on the predictions itself, thus it can be done
in parallel with reading from the prediction queue. The critical path
of delivering the prediction includes the read from the prediction
queue and the propagation delay through the muxes, and should
not increase the critical path of that stage.

5.6 Hardware Overhead Analysis
The main hardware overhead is the secondary tag in the TAGE
predictor. A 5-bit secondary tag introduces an additional 18.75KB
of storage in the predictor. The prediction queue is sized to be 133
entries. Each entry in the prediction queue is 33 bits, resulting in
549B of storage overhead. The additional counter in the single-cycle
predictor is 3 bits per entry and results in 384B storage overhead.
Overall, our design adds 19.65KB of area overhead. Note that we
provide the comparison between our design and a large baseline
TAGE to match the storage in Sec. 6.6.

6 Evaluation
6.1 Methodology

Core 3.2GHz, 16-wide issue
512 Entry ROB, 256 Entry Reservation Station

Caches 32KB 8-way L1 I-cache & D-cache 4-cycle access
1MB 16-way LLC cache 18-cycle access, 64B lines

Memory DDR4_2400R: 1 rank, 2 channels
4 bank groups and 4 banks per channel

tRP-tCL-tRCD: 16-16-16
Single Cycle Predictor 1K-entry 4-way target buffer

2-bit saturating counter per entry
Main Predictor 8K-entry 4-way target buffer

TAGE: 8K entry T0, 6 short histories, 15 long histories
10 1k-entry short tables, 20 1k-entry long tables

Total Capcity: 56.63KB
up to 1 taken branch per cycle, 3 cycle latency

Predictor Bandwidth Up to the first taken or 16 instructions
Fetch Bandwidth Up to 16 instructions
Fetch Queue 8 Prediction Packets

Table 2: Simulation Parameters

To evaluate how our predictor design affects prediction accu-
racy and overall processor performance, we simulate the micro-
architecture of an aggressive out-of-order core in an execution-
driven cycle-accurate x86_64 simulator [3]. The system details for
the baseline OoO core and additional structures for our ahead pre-
dictor are listed in Table 2. Our baseline models a very aggressive
OoO core that contains a multi-level predictor (Section 2.2) and a
decoupled frontend.

We use TAGE as the main predictor as it is the most common
predictor found in products today and is the main component of
the TAGE-SC-L predictor [39]. The baseline TAGE predictor is con-
figured exactly as the TAGE predictor from TAGE-SC-L in CBP5[1].
Ahead pipelining the statistical corrector (SC) is expensive because
it requires multi-porting the internal tables. The loop (L) predictor
is a small table and can likely be looked up in a single cycle. Overall,
SC and L only provide modest performance improvements (1.11% )
over the baseline TAGE.

We use all applications from SPEC CPU2017 (speed) in our eval-
uation. We use SimPoints [43] to generate up to 5 Simpoints for
each input set, with 200 million instructions per Simpoint.

6.2 Results
We first evaluate the performance impact of our ahead predictor
compared to the baseline TAGE. Fig. 11 shows the MPKI of baseline



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

Figure 11: MPKI of Baseline TAGE and Our Ahead Predictor

Figure 12: Normalized Performance Improvement

single cycle predictor, baseline TAGE and our ahead predictor. On
average, our predictor is within 0.1 MPKI of the baseline TAGE.
Fig. 12 shows the normalized performance of using our ahead pre-
dictor compared to a baseline out-of-order core with multi-level
prediction. We also compare our scheme against an oracle where
the TAGE latency is reduced to 1 cycle and is used as the single
cycle predictor. Overall, our design provides 4.4% geomean IPC
improvement. This is within 68% of an ideal solution (single cycle
TAGE that provides 6.42% performance improvement) while still
being physically realizable.

Exchange, bwaves, and cams benefit the most because they are
bound by the instruction supply and do not suffer from much back-
end pressure. Moreover, these benchmarks suffer from high single
cycle predictor MPKI, but have low MPKI on TAGE, which makes
ahead prediction a good choice for them because they do not exhibit
many missing history patterns. Leela, mcf, and xz show some per-
formance improvement with an oracle single-cycle TAGE, but our
design is unable to capture all the missing history patterns as there
are many clustered unpredictable branches in these benchmarks.
In omnetpp and xalancbmk, our ahead predictor has a better MKPI
but shows worse performance. This is because wrong path instruc-
tions in these benchmarks help prefetch data that is eventually
useful, and removing these mispredicting reduces this prefetching
effect. Gcc loses performance because of the large number of static

branches. This increases the capacity pressure on our ahead predic-
tor as explained in Sec. 5.1, decreases the predictor accuracy, and
adversely affects performance.

Using TAGE-SC-L as the baseline: Compared to a non-ahaed
pipelined TAGE-SC-L, our TAGE-only ahead predictor implemen-
tation provides 3.3% IPC improvement.

Sensitivity to fetch queue size: The performance does not
decrease much with larger queue sizes. Increasing the number of
entries from 8 to 20 only dropped performance to 4%.

6.3 Secondary Tag Size
A longer secondary tag increases the area and energy overhead;
however, it makes it easier to differentiate between missing history
patterns for the same ahead history. This reduces the amount of
aliasing caused by ahead prediction. A shorter secondary tag is
more efficient and adds less area overhead. We evaluate our design
at an ahead distance of 5 with 0 to 9 bits of secondary tag. A tag
width of 0 means that the predictor just uses ahead information
and does not use any missing history information.

Fig. 13 shows the MPKI of our predictor for different secondary
tag widths. A tag width of 0 suffers the most aliasing and has a
much higher MPKI than baseline TAGE. As the tag width increases,
the amount of aliasing reduces and so does the MPKI. The benefit
of adding more tag bits shows diminishing returns: After a tag



Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 13: MPKI vs Secondary Tag Size

width of 4, the MPKI reduction is minimal. In terms of performance,
using 1 bit of tag is enough to provide around half the benefit (2.2%
performance) which shows performance is even more skewed when
it comes to the diminishing returns. We chose to go with a 5-bit tag
to get the highest possible performance, but the tag width being
decoupled from the ahead distance provides a wide design space to
optimize the ahead predictor design.

6.4 Ahead Distance
Fig. 14 shows the MPKI of our ahead predictor and prior work
as ahead distances increases from 3 to 7. With a longer ahead
distance, more missing history patterns are exposed. Our solution
performs slightlyworse than the priorwork, as prior work considers
all possible missing history patterns. However, the per-prediction
energy increases exponentially as explained in Sec. 4.5, makes prior
work impossible to be implemented.

Our baseline uses a 3-cycle TAGE predictor. Experiments show
that an ahead distance of 5 can cover the entire prediction latency
91.3% of time. Fig. 15 shows the normalized IPC of our predictor
as the ahead distance increases (the secondary tag increases with
the ahead distance). In our design, an ahead distance of 6 covers
almost all of the predictor latency.

Figure 14: MPKI vs Ahead Distance

6.5 MPKI vs Number of Tables Read
Fig. 16 shows the MPKI of our ahead predictor as the number of
tables read per prediction decreases from 21 to 14. We use the

Figure 15: Normalized IPC vs Ahead Distance

banking interleaving feature introduced in the latest version of
TAGE, where the number of histories is less than the number of
physical tables. This allows us to change the number of tables read
per prediction without changing the underlying capacity of TAGE.
In this experiment, we gradually remove the number of 2-way
histories in TAGE until all histories are 1-way. More tables read
per prediction help with the distribution of counters from the same
ahead history. However, this effect does not show up significantly
until only 14 tables are read per prediction.

Figure 16: MPKI vs Number of Histories

6.6 ISO-Area Comparison
The secondary tags incur 18.75KB of extra storage. If the same
storage is applied to the baseline TAGE at the same latency, it can
only achieve 0.13 MPKI and 0.19% performance improvement over
baseline, much lower than what our ahead prediction scheme offers.

7 Related Work
Unlike the TAGE predictor that attaches a prediction counter to
a particular control flow, Perceptron Branch Predictor [18] uses a
weight for each bit in the history representing its contribution to
the overall prediction and sums all the weight up at the time of
prediction. The latency of Perceptron is later improved [15, 20] by
computing the sum as the directions of the previous branches are
made available. Therefore, only one addition is needed during the
last cycle. However, this approach only applies to perceptron.

Recent work [10] has shown that predictor storage in current
designs does not fit the application footprint of server workloads.



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cai et al.

While there have been multiple proposals to mitigate the capac-
ity pressure on the BTB [22, 23, 25, 34, 44], very few works have
been published on predictor capacity. Whisper [24] uses offline
profile information to determine a static prediction function for
predictable branches. In doing so, predicting these branches does
not require capacity in the main predictor, leaving more capacity
for other branches. Last-Level Branch Predictor[36] proposes using
secondary storage to back up the main predictor, and a prefetcher
to manage the secondary storage. While our design can eliminate
the prediction latency, it cannot increase the prediction size in-
definitely for 2 reasons. The larger predictor size leads to a longer
ahead distance and can negatively impact performance as explained
in Section 6.4. In addition, the physical location of the main pre-
dictor is near the processor frontend, where the on-chip area is
extremely contentious. A prefetcher approach like the Last-Level
Branch Predictor [36] can enable larger predictor designs beyond
what an ahead prediction approach can provide. We believe all
three approaches can be combined in the future.

Our ahead prediction scheme increases the effective predictor
throughput. This is because each early pipeline flush from the dis-
agreement between TAGE and the single-cycle predictor effectively
stalls the prediction pipeline for 2 cycles, making the prediction
throughput only 1/3 of its peak throughput. FDIP [35] relies on
the addresses generated by the branch predictor to prefetch into
the I-cache. A faster prediction unit allows the predictor to run
further ahead, providing more opportunity for prefetching. APF [9],
CDF [11], Precise Runahead Execution [31], and TEA [8] use the
main predictor to generate the critical/runahead control flow. A
faster predictor would enable all of these works to run further ahead
and extract more performance.

8 Conclusion
Modern branch predictors are large and complex. They cannot
predict branches within a single cycle, introducing bubbles in the
pipeline and hurting processor performance. Ahead prediction is a
widely proposed solution to this problem but drastically increases
prediction energy as exponentially more entries are read out for
each branch skipped, making building such a predictor impractical.

Our paper shows that only a few missing history patterns are
observed in the program’s runtime. Using this insight, we present
a new approach for building ahead predictors that does not require
reading exponentially more entries for large ahead distances. Our
ahead predictor provides a 4.4% performance improvement while
increasing power by only 1.5x, as opposed to prior designs that
incur a 14.6x energy overhead. By hiding the predictor latency
from the rest of the pipeline, our work allows for larger and more
complex predictors and better pipelining width scaling.

Acknowledgments
We thank the anonymous reviewers, the members of the HPS Re-
search Group for their feedback and help in improving this paper.
We also thank Intel, Arm, and Rivos for their financial support.

References
[1] [n. d.]. Championship Branch Prediction. https://jilp.org/cbp2016/.
[2] [n. d.]. Loongson 3A6000: A Star among Chinese CPUs. https://chipsandcheese.

com/2024/03/13/loongson-3a6000-a-star-among-chinese-cpus/.

[3] [n. d.]. Scarab. https://github.com/hpsresearchgroup/scarab.
[4] 2017. The Standard Performance Evaluation Corporation (SPEC). https://www.

spec.org/cpu2017/
[5] Daniel Chaver, Luis Piñuel, Manuel Prieto, Francisco Tirado, and Michael C.

Huang. 2003. Branch prediction on demand: an energy-efficient solution. In
Proceedings of the 2003 International Symposium on Low Power Electronics and
Design (Seoul, Korea) (ISLPED ’03). Association for Computing Machinery, New
York, NY, USA, 390–395. doi:10.1145/871506.871603

[6] Daniel Chaver, Luis Piñuel, Manuel Prieto, Francisco Tirado, and Michael C.
Huang. 2003. Branch prediction on demand: an energy-efficient solution. In
Proceedings of the 2003 International Symposium on Low Power Electronics and
Design (Seoul, Korea) (ISLPED ’03). Association for Computing Machinery, New
York, NY, USA, 390–395. doi:10.1145/871506.871603

[7] Jian Chen and Lizy K. John. 2011. Autocorrelation analysis: A new and improved
method for branch predictability characterization. In 2011 IEEE International
Symposium on Workload Characterization (IISWC). 194–203. doi:10.1109/IISWC.
2011.6114179

[8] Aniket Deshmukh, LingzheChester Cai, and Yale N. Patt. 2024. Timely, Efficient,
and Accurate Branch Precomputation. In 2024 57th IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 480–492. doi:10.1109/MICRO61859.2024.
00043

[9] Aniket Deshmukh, Lingzhe Chester Cai, and Yale N. Patt. 2024. Alternate Path
Fetch. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 1217–1229. doi:10.1109/ISCA59077.2024.00091

[10] Aniket Deshmukh, Ruihao Li, Rathijit Sen, Robert R. Henry, Monica Beckwith,
and Gagan Gupta. 2021. Performance Characterization of .NET Benchmarks.
In 2021 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 107–117. doi:10.1109/ISPASS51385.2021.00028

[11] Aniket Deshmukh and Yale N. Patt. 2021. Criticality Driven Fetch. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 380–391. doi:10.1145/3466752.3480115

[12] M. Evers, S.J. Patel, R.S. Chappell, and Y.N. Patt. 1998. An analysis of correla-
tion and predictability: what makes two-level branch predictors work. In Pro-
ceedings. 25th Annual International Symposium on Computer Architecture (Cat.
No.98CB36235). 52–61. doi:10.1109/ISCA.1998.694762

[13] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A.
Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas
Sinha, and Ankit Ghiya. 2020. Evolution of the Samsung Exynos CPU Microar-
chitecture. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 40–51. doi:10.1109/ISCA45697.2020.00015

[14] Yasuo Ishii. 2007. Fused Two-Level Branch Prediction with Ahead Calculation.
Journal of Instruction-Level Parallelism (JILP) Special Issue: The Second Champi-
onship Branch Prediction Competition (CBP-2) 9 (2007), 1–19.

[15] D.A. Jimenez. 2003. Fast path-based neural branch prediction. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
243–252. doi:10.1109/MICRO.2003.1253199

[16] D.A. Jimenez. 2005. Piecewise linear branch prediction. In 32nd International
Symposium on Computer Architecture (ISCA’05). 382–393. doi:10.1109/ISCA.2005.
40

[17] D.A. Jimenez, S.W. Keckler, and C. Lin. 2000. The impact of delay on the design of
branch predictors. In Proceedings 33rd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-33 2000. 67–76. doi:10.1109/MICRO.2000.898059

[18] D.A. Jimenez and C. Lin. 2001. Dynamic branch prediction with perceptrons. In
Proceedings HPCA Seventh International Symposium on High-Performance Com-
puter Architecture. 197–206. doi:10.1109/HPCA.2001.903263

[19] Daniel A. Jiménez. 2003. Reconsidering Complex Branch Predictors. In Proceed-
ings of the 9th International Symposium on High-Performance Computer Architec-
ture (HPCA ’03). IEEE Computer Society, USA, 43.

[20] Daniel A. Jiménez. 2005. Improved latency and accuracy for neural branch
prediction. ACM Trans. Comput. Syst. 23, 2 (may 2005), 197–218. doi:10.1145/
1062247.1062250

[21] Daniel A. Jim´enez. 2016. Multiperspective Perceptron Predictor with TAGE.
https://api.semanticscholar.org/CorpusID:221213615

[22] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified instruc-
tion supply for scale-out servers. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 166–177. doi:10.1145/2830772.2830785

[23] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided BTB Prefetch-
ing for Data Center Applications. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 816–829.
doi:10.1145/3466752.3480124

[24] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam Sunwoo,
Heiner Litz, Daniel A. Jiménez, and Baris Kasikci. 2022. Whisper: Profile-Guided
Branch Misprediction Elimination for Data Center Applications. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). 19–34. doi:10.

https://jilp.org/cbp2016/
https://chipsandcheese.com/2024/03/13/loongson-3a6000-a-star-among-chinese-cpus/
https://chipsandcheese.com/2024/03/13/loongson-3a6000-a-star-among-chinese-cpus/
https://github.com/hpsresearchgroup/scarab
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://doi.org/10.1145/871506.871603
https://doi.org/10.1145/871506.871603
https://doi.org/10.1109/IISWC.2011.6114179
https://doi.org/10.1109/IISWC.2011.6114179
https://doi.org/10.1109/MICRO61859.2024.00043
https://doi.org/10.1109/MICRO61859.2024.00043
https://doi.org/10.1109/ISCA59077.2024.00091
https://doi.org/10.1109/ISPASS51385.2021.00028
https://doi.org/10.1145/3466752.3480115
https://doi.org/10.1109/ISCA.1998.694762
https://doi.org/10.1109/ISCA45697.2020.00015
https://doi.org/10.1109/MICRO.2003.1253199
https://doi.org/10.1109/ISCA.2005.40
https://doi.org/10.1109/ISCA.2005.40
https://doi.org/10.1109/MICRO.2000.898059
https://doi.org/10.1109/HPCA.2001.903263
https://doi.org/10.1145/1062247.1062250
https://doi.org/10.1145/1062247.1062250
https://api.semanticscholar.org/CorpusID:221213615
https://doi.org/10.1145/2830772.2830785
https://doi.org/10.1145/3466752.3480124
https://doi.org/10.1109/MICRO56248.2022.00017
https://doi.org/10.1109/MICRO56248.2022.00017


Enabling Ahead Prediction with Practical Energy Constraints ISCA ’25, June 21–25, 2025, Tokyo, Japan

1109/MICRO56248.2022.00017
[25] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the

Front-End Bottleneck with Shotgun. SIGPLAN Not. 53, 2 (mar 2018), 30–42.
doi:10.1145/3296957.3173178

[26] G.H. Loh. 2006. Revisiting the performance impact of branch predictor latencies.
In 2006 IEEE International Symposium on Performance Analysis of Systems and
Software. 59–69. doi:10.1109/ISPASS.2006.1620790

[27] Scott Mcfarling. 1998. Combining Branch Predictors. (10 1998).
[28] P. Michaud, A. Seznec, and S. Jourdan. 1999. Exploring instruction-fetch band-

width requirement in wide-issue superscalar processors. In 1999 International
Conference on Parallel Architectures and Compilation Techniques (Cat. No.PR00425).
2–10. doi:10.1109/PACT.1999.807388

[29] Pierre Michaud, André Seznec, Stéphan Jourdan, and Pascal Sainrat. 1998. Alter-
native Schemes for High-Bandwidth Instruction Fetching. Research Report RR-3392.
INRIA. https://inria.hal.science/inria-00073297

[30] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2007). 3–14. doi:10.1109/MICRO.2007.33

[31] Ajeya Naithani, Josué Feliu, Almutaz Adileh, and Lieven Eeckhout. 2020. Precise
Runahead Execution. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 397–410. doi:10.1109/HPCA47549.2020.00040

[32] D. Parikh, K. Skadron, Yan Zhang, M. Barcella, and M.R. Stan. 2002. Power issues
related to branch prediction. In Proceedings Eighth International Symposium on
High Performance Computer Architecture. 233–244. doi:10.1109/HPCA.2002.995713

[33] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,
Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tum-
mala, Jamshed Jalal, MarkWerkheiser, and Anitha Kona. 2020. The Arm Neoverse
N1 Platform: Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC.
IEEE Micro 40, 2 (2020), 53–62. doi:10.1109/MM.2020.2972222

[34] Arthur Perais and Rami Sheikh. 2023. Branch Target Buffer Organizations.
In Proceedings of the 56th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Toronto, ON, Canada) (MICRO ’23). Association for Computing
Machinery, New York, NY, USA, 240–253. doi:10.1145/3613424.3623774

[35] G. Reinman, B. Calder, and T. Austin. 1999. Fetch directed instruction prefetching.
In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture. 16–27. doi:10.1109/MICRO.1999.809439

[36] David Schall, Andreas Sandberg, and Boris Grot. 2024. The Last-Level Branch
Predictor. In 2024 57th IEEE/ACM International Symposium on Microarchitecture

(MICRO). 464–479. doi:10.1109/MICRO61859.2024.00042
[37] A. Seznec. 2005. Analysis of the O-GEometric history length branch predictor.

In 32nd International Symposium on Computer Architecture (ISCA’05). 394–405.
doi:10.1109/ISCA.2005.13

[38] André Seznec. 2007. A 256 kbits l-tage branch predictor. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch Prediction
Competition (CBP-2) 9 (2007), 1–6.

[39] André Seznec. 2016. TAGE-SC-L Branch Predictors Again. In 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5). Seoul, South Korea. https://inria.hal.science/hal-01354253

[40] A. Seznec and A. Fraboulet. 2003. Effective ahead pipelining of instruction
block address generation. In 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings. 241–252. doi:10.1109/ISCA.2003.1207004

[41] André Seznec, Stéphan Jourdan, Pascal Sainrat, and Pierre Michaud. 1996.
Multiple-Block Ahead Branch Predictors. In Proceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages and Op-
erating Systems (Cambridge, Massachusetts, USA) (ASPLOS VII). Association for
Computing Machinery, New York, NY, USA, 116–127. doi:10.1145/237090.237169

[42] André Seznec and Pierre Michaud. 2006. A case for (partially) tagged geometric
history length branch prediction. The Journal of Instruction-Level Parallelism 8
(Feb. 2006), 23. https://inria.hal.science/hal-03408381

[43] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Au-
tomatically Characterizing Large Scale Program Behavior (ASPLOS X). 45–57.
doi:10.1145/605397.605403

[44] Niranjan K Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris Kasikci,
Heiner Litz, and Sreenivas Subramoney. 2021. PDede: Partitioned, Deduplicated,
Delta Branch Target Buffer. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association
for Computing Machinery, New York, NY, USA, 779–791. doi:10.1145/3466752.
3480046

[45] Tse-Yu Yeh and Yale N. Patt. 1991. Two-Level Adaptive Training Branch Prediction.
In Proceedings of the 24th Annual International Symposium on Microarchitecture
(Albuquerque, New Mexico, Puerto Rico) (MICRO 24). Association for Computing
Machinery, New York, NY, USA, 51–61. doi:10.1145/123465.123475

[46] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N. Patt. 2020. Branch-
Net: A Convolutional Neural Network to Predict Hard-To-Predict Branches. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 118–130. doi:10.1109/MICRO50266.2020.00022

https://doi.org/10.1109/MICRO56248.2022.00017
https://doi.org/10.1145/3296957.3173178
https://doi.org/10.1109/ISPASS.2006.1620790
https://doi.org/10.1109/PACT.1999.807388
https://inria.hal.science/inria-00073297
https://doi.org/10.1109/MICRO.2007.33
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1109/HPCA.2002.995713
https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1145/3613424.3623774
https://doi.org/10.1109/MICRO.1999.809439
https://doi.org/10.1109/MICRO61859.2024.00042
https://doi.org/10.1109/ISCA.2005.13
https://inria.hal.science/hal-01354253
https://doi.org/10.1109/ISCA.2003.1207004
https://doi.org/10.1145/237090.237169
https://inria.hal.science/hal-03408381
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/3466752.3480046
https://doi.org/10.1145/3466752.3480046
https://doi.org/10.1145/123465.123475
https://doi.org/10.1109/MICRO50266.2020.00022

	Abstract
	1 Introduction
	2 Background
	2.1 Branch Prediction
	2.2 Branch Predictor Latency
	2.3 Multi-Level Prediction
	2.4 Baseline
	2.5 Decoupled Frontend
	2.6 Ahead Prediction

	3 Number of Missing History Patterns
	3.1 Experimental Results
	3.2 Predictable Intermediate Branches
	3.3 Tying Everything Together

	4 Designing an Efficient Ahead Predictor
	4.1 Predicting a Branch: An Example
	4.2 Selection Function/Secondary Tag
	4.3 Updating the Predictor
	4.4 The Importance of Having Few Patterns
	4.5 Energy Comparison against Prior Work

	5 Integration with Core
	5.1 Single-Cycle Override
	5.2 Prediction Queue Management
	5.3 Late Predictions
	5.4 Prediction Pipeline Restart
	5.5 Critical Path Analysis
	5.6 Hardware Overhead Analysis

	6 Evaluation
	6.1 Methodology
	6.2 Results
	6.3 Secondary Tag Size
	6.4 Ahead Distance
	6.5 MPKI vs Number of Tables Read
	6.6 ISO-Area Comparison

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

