Criticality Driven Execution

Aniket Deshmukh

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2025-001
June, 2025

Copyright
by
Aniket Deshmukh
2025

The Dissertation Committee for Aniket Deshmukh
certifies that this is the approved version of the following dissertation:

Criticality Driven Execution

Committee:

Yale N. Patt, Supervisor
Mattan Erez
Poulami Das
Christopher J. Rossbach

Rustam R. Miftakhutdinov

Criticality Driven Execution

by
Aniket Deshmukh

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2025

Acknowledgments

Many people contributed both directly and indirectly, in big and small ways,

to help me reach where I am today.

Beginning, of course, with my family. My parents continue to be my biggest
supporters in whatever path I choose. My mum, Anjali Deshmukh, is the closest
confidant and friend I have ever had. She raised me to be loving and kind, open-
minded and independent, to learn to live with myself through all my shortcomings and
weaknesses. Our conversations - over everything from philosophy, science, technology;,
Yoga, and the like helped me grow and understand both myself and the world around
me in a way [could never have managed on my own. I only hope that I can continue
to support her in the best way I can and carry forward her spirit of giving back to

society.

My baba, Aashish Deshmukh, has always been my strongest pillar of support.
His dedication toward excellence and discipline was what drove me to perform to the
best of my ability, no matter what the task. However, his love and care shone through
in many moments - when he gave me my first Isaac Asimov book, when he helped me
with fluid mechanics during my entrance exams, but most prominently: when I chose
to do my PhD. I still remember him saying, “Take as long as you want, study all your
life if you wish. We are here to support you emotionally and financially, so don’t hold
yourself back.” These words gave me the confidence to push forward without fear,

and I cannot thank him enough for that.

Toward my younger brother, Aneesh Deshmukh, I feel a great debt. We've
had fun times together, but I feel I wasn’t there for him when he was going through
tough times during my undergraduate years, yet he was there to lend me an ear and
listen to all my troubles over the course of my PhD. I can only hope you lean on
me more for support. My cousin, Shivansh Dutt, ever a bundle of energy, made sure

the time we spent over the years was always insane fun. I thank my aunt, Anuradha

5

Harke, and my grandmother, Shakuntala Harke, for always greeting me with a smile
when I go back home to India and for all the amazing food I can never get anywhere

else in the world.

I thank all my friends in Austin for their company over these past few years.
Prateek, Wengqi, and Anyesha, who joined the PhD program alongside me, have been
constant companions, both in the office at EER and outside. I thank Abbie, who
was happy to chat over coffee anytime, and Jaegun, for being a good friend and
driving me from time to time. I thank Divija, Jaeyong, Andrew, Margaret, and
Rathna, among the juniors, for going along with anything I planned. Special thanks
to Kayvan and Matthew for proofreading everything I gave them, and of course, for

their great company, especially over the past summer.

I thank Ali and Kayvan, who helped me sound out my research ideas and
listened to all my rants, Sophia, who was always willing to help out with everything
and always had food for us, and Evan, who wasn’t around for long but fit perfectly

into our CBP team.

I haven’t been in touch with folks back in India as much as I should have -
Aditya, Masroor, and the rest of the Class-VIII group. But the few chances we did

have to talk always reminded me of the good times.

During my internships, I met many people who helped me grow professionally
and provided perspective on how the industry works. I thank Doug Carmean for
giving me the freedom to explore as much as I wanted at Microsoft, and especially
Rob Chappell, who helped me mold the core ideas for my dissertation early on. I
thank Jayesh Gaur and John Combs for my time at Intel. I am grateful to Niket, Mo,
Rustam, and Kulin for fully supporting me during my two final Apple internships

and giving me the opportunity to work on engaging projects.

I enjoyed the advice and company of all the UT professors. I thank Mattan

Erez for his honest opinion on everything, and Poulami Das for all her advice.

One of the biggest aspects of my time as a PhD student was being part of
the HPS research group. Faruk often drove me home after our group meetings, and
chatting with him about his hobbies and life in general was a lot of fun. Despite
being the most senior student when I first joined, he made me feel truly welcome.
There was never a dull moment with Ben around - his comments always kept things

interesting, and his assistance with all my memory-related questions was invaluable.

In Stephen, I saw someone going through similar struggles to mine and coming
out on top. His advice on how to conduct research and how to speak clearly to convey
your ideas helped me through my middle PhD years, when I really struggled, and I
am thankful to him for this. Siavash was always welcoming and happy to talk about
whatever I wanted - research, personal life, or just to go get fried chicken, which I

really appreciate.

The last seven years of my PhD wouldn’t have been enjoyable without Chester.
Ever since my first publication, the two of us have talked about research so often
that we’ve probably memorized the intricacies of each other’s work by now. Having
someone with whom you can discuss everything: basketball, food, life in general, and
almost everything else under the sky made me feel I wasn’t in this alone, and I truly
thank Chester for that. I also thank Leticia, who, as part of the staff, supported the

group with all our administrative needs.

I thank all my PhD committee members—Mattan Erez, Chris Rossbach, Poulami
Das, and Rustam Miftakhutdinov—for their support and feedback, which went a long
way towards ensuring the dissertation was up to the mark. I also thank them for ad-

justing to what was a very hectic timeline in the last few months.

Finally, I thank Dr. Patt for all he has taught me over the last eight years.
His ability to explain complex concepts so simply that even students fresh out of high
school could understand stuck with me when I first TAed for him, and has always
been a goal I wish to achieve someday. As a young PhD student who joined the group,

he encouraged me to freely explore the breadth and depth of computer architecture

7

research, which helped me build a strong foundation. As his head TA, he showed me
the importance of being sharp, precise, and meticulous in everything I did. These
were also some of the best times I had teaching students, and I thank him for this
opportunity. Above all, I thank him for his trust in me, which allowed me to achieve

this milestone of completing my PhD dissertation.

-Aniket, April 2025, Austin, TX

Abstract

Criticality Driven Execution

Aniket Deshmukh, PhD
The University of Texas at Austin, 2025

SUPERVISOR: Yale N. Patt

Modern out-of-order (OoQ) cores achieve high single-thread performance by
maintaining a steady instruction supply through accurate branch prediction and re-
ducing memory access latencies using data prefetchers and a cache hierarchy. Despite
advancements in prediction algorithms and data prefetching techniques, the remain-
ing branch mispredictions and cache misses still present major bottlenecks in many
applications. Moreover, these bottlenecks often overlap in many applications - accel-
erating them together is vital for extracting the full benefit associated with solving
these bottlenecks. Most prediction alternatives proposed in academia, like precom-
putation and runahead execution, only target either branch misprediction or cache
misses and provide limited coverage. While solutions that target both branches and

load like Slipstream exist, they require significant area, power, and energy investment.

This work provides a holistic approach for reducing the performance penalty
associated with a significant fraction of these branch mispredictions and cache misses,
without needing any additional execution hardware. Criticality Driven Execution
(CDE) constructs accurate and lightweight dependence chains that issue early pipeline
flushes for hard-to-predict branches and improve Memory Level Parallelism for long-

latency loads simultaneously. It combines speculative precomputation—executing

9

specific chains twice—with instruction reordering that prioritizes the fetch and allo-
cation of the remaining chains, accelerating the execution of these “critical” chains
while maintaining high coverage. CDE dynamically redistributes existing OoO core
resources to prioritize critical chains at the cost of delaying and providing fewer
resources to “non-critical” instructions, achieving a 9% performance improvement

without requiring a dedicated execution engine or separate OoQO core.

10

Table of Contents

Listof Tablesl oo o 15
[List of Figures 16
[Chapter 1: Introduction| 18
(L1 The Probleml. 18
[1.1.1 Impact of Branch Mispredictions and Cache Misses| 19

[1.1.2 Limitations of the Existing Execution Model 20

(1.2 Criticality Driven Execution| 21
[1.2.1 Identitying Critical Instructions|. 22

[1.2.2 Precomputation for Hard-To-Predict Branch Chains| 22

[1.2.3 Preferential Allocation for Long-Latency Load Chains| 23

(1.3 Building a Unified Execution Model 24
(1.4 Contributions| o 25
(Lo Thesis Statement] oo 26
[1.6 Dissertation Organization|. 26
[Chapter 2: Background and Prior Workl. 27
2.1 Prediction Mechanismsl oL 27
2.1.1 Branch Prediction| 27

[2.1.2 Data Prefetchingl 27

[2.2 Precomputation|o 28
[2.2.1 Compiler Generated Threads 28

[2.2.2 Runtime Precomputation Threads 28

[2.2.3 Shlipstream| 29

[2.2.4 Using Precomputation to Resolve Branches Early| 30

2.3 Runahead Fxecution| oo 31
[2.4 Compiler Solutions| 32
2.5 Other Related Workf. 32

1 -Of- JOTE .. 33

[Chapter 3: Critical Chain Construction| 35
[3.1 Marking Hard-To-Predict Branches and Long-Latency Loads| 35
B.1.1 Critical Count Tabled 35

[3.2 Identitying Dependence Chain Instructions| 36
.21 Kill Buffer].o oo 37

[3.2.3 Storing Dependence Chain Instructions| 40

[3.3 Tracking Memory Dependencies| 40
[3.4 Tracing Longer Dependence Chaing| 40
[3.5 Combining Chains across Multiple Control Flows|. 41
[3.6 Steady State Operation| 43
8.6.1 Block Cachel 43

[3.7 Reconstructing the Dependence Chains at Fetchl 45
[Chapter 4. Speculative Precomputation for Hard-To-Predict Branch Chains|. 48
4.1 CDE Precomputation Thread 48
[4.1.1 Benefits of using the Main Branch Predictor|. 49
[4.1.2 Load Prefetching Eftect| o1

[4.2 Implementation Overview|. o1
4.3 Frontend 52
HE3T Tefchl oo 53
4.3.2 Rename and Allocationl 53

A Backend 53
[4.4.1 Freeing Physical Registers) 54
[4.4.2 Dealing with Stores| 55
[4.4.3 Branch Misprediction Flushes|. 56
[4.4.4 Terminating the CDE Precomputation Thread| 57

45 Hardware Overheado 59
4.6 Evaluationl 60
[4.6.1 Methodology| 60
[4.6.2 Performancel Lo 60
[4.6.3 Load Prefetching Eftect| 63
[4.6.4 Varying the Precomputation Thread Density] 66
[4.6.5 Comparison against Branch Runahead| 67
[4.6.6 On-Core vs Dedicated Execution Enginef 68
[4.6.7 More Sensitivity Studies|o 68

12

[Chapter 5: Preferential Allocation for Long-Latency Load Chains| 70

[>.1 Improving Memory Level Parallelism| 70
[>.1.1 Partitioning Backend Resources|. 71
[5.1.2 Impact on Branch Misprediction Latency| 72

b2 Frontend 73
B2T Felchl 73
b.22 Renamel 73
[5.2.3 Dependence Violations in the Critical Stream| 76

B3 Backend 7
[>.3.1 Schedulingl 0 000 7
[5.3.2 Dynamically Changing the Partition Sizes| 7
[>.3.3 Branch Mispredictions| 78
[5.3.4 Consistency Considerations and Memory Disambiguation| . . . 78
[H.3.5 In-Order Retirement! 78
[5.3.6 Terminating Preferential Allocation| 79

6.4 Hardware Overhead 79

b5 Evaluationl 80
[b.50.1 Performancel o 80
[5.5.2 Dealing with Branch Mispredictions| 82
[5.5.3 Varying the Critical Stream Density| 83
[5.5.4 Comparison Against Runahead Execution| 84
[5.5.5 Reducing the MSHR sizes| 86

[Chapter 6: Building a Unified Model| 87

[6.1 Percentage ot Instructions in Dependence Chains|. 87
[6.1.1 Experiment Designl. 00000 88
[6.1.2 Benchmark Categorization| 88
[6.1.3 Improving Loads and Branches Individually| 91

0.2 Unified Execution Modell 92
[6.2.1 Why the Simple Approach does not Work| 92
[6.2.2 Accelerating Loads and Branches together| 93

[6.3 Implementation Overview|. 94

[6.4 Tracing Chains for the Precomputation Thread and the Critical Stream| 95

[6.41 Critical Count Tabled 95
6.42 Fill Buffer]. oo 96
6.4.3 Backward Dataflow Walkl 96

[6.6 Frontend Changes for the Unified Model] 98
B6I Tetchl oo 98

6.6.2 Renamel 99

6.6.3 Allocation|. 99

[6.7 Backend Changes for the Unified Model| 99
6.8 Hardware Overhead 99
6.9 FEwvaluation| 100
[6.9.1 Performancel L 100

[6.9.2 Misprediction Coverage] 102

[6.9.3 Comparison against a Slipstream-Like Approach| 103

[6.9.4 Parameter Tuning| 104
[Chapter 7: Conclusion and Future Work] 105
[(.1 Conclusionl 105
[(2 Future Worklo 106
References 108

14

List of Tables

2.1 Core parameters|. 33
[3.1 Fill Bufferentry|l.o 37
4.1 Structure sizes for the CDE precomputation model| 52
4.2 Percentage of branch mispredictions for which the tull penalty is saved | 62
[5.1 Structure sizes for the preferential allocation modell 73
[6.1 Benchmark categories based on chain properties 90

15

List of Figures

(1.1 Eliminating all branch mispredictions and D-Cache misses| 18
[3.1 Identitying dependence chain instructions in the Fill Bufter| 38
[3.2 Tracing longer dependence chains using previously marked instructions| 41
[3.3 Tracing dependence chains across multiple control flows|. 42
[3.4 Implementation overview: Tracing dependence chaing| 44
[3.5 Fetching uops from the Block Cachel. 46
(4.1 CDE precomputation thread examplef 48
4.2 Implementation overview: Precomputation for hard-to-predict branches| 51
4.3 Physical Register Map Tablel 55
4.4 Example of an incorrect precomputation thread| 58
4.5 Sequence of events leading up to the detection of an incorrect chamn| . 58

4.6 CDE precomputation thread: Branch MPKI, speedup and percentage |

of instructionsf 61
4.7 Branch misprediction coverage| L. 62
4.8 Run-ahead distancelo oL 64

09 Derhiton of mam thrcad Toad] T e D-Cachd . 65

[4.10 Performance for different Critical-Branch Count Table decrement periods| 66

[4.11 Comparison against Branch Runahead| 67
[4.12 Speedup with a dedicated execution engine| 68
[4.13 Incorrect chains detected per 1000 instructions|. 69
[4.14 Relative Speedup with 32 Functional Units in the Baseline| 69
[>.1 Preferential allocation example| 70

[>.2 Implementation overview: Preferential allocation for load-latency loads| 72

[>.3 Renaming in preferential allocation: An example]. 74
[>.4 Renaming in preferential allocation: An example (continued)| 75
[5.5 Preferential allocation: LLC MPKI, speedup, and percentage of in- |

structions|o 81
[>.6 Memory-Level Parallelism| 82
[>.7 Branch resolution latency, normalized to baseline[. 83

[5.8 Pertormance for different Critical-Load Count Table decrement periods| 84

16

[5.9 Comparison against Runahead Execution|. 85
[5.10 Using 24 MSHRs in the Baseline]. 85
6.1 Distribution of chain instructionsl 89
[6.2 Accelerating only hard-to-predict branch chains or long-latency load |

chaingl 91
[6.3 Implementation overview: Unified execution model for CDEf 95
[6.4 Critical Count Tables with two countersl 96
[6.5 'Tracing chains in the combined model|. 97
[6.6 Dynamically adjusting the decrement period for precomputation thread 98|
[6.7 Speedup of the unified execution model|f 100
[6.8 Branch misprediction and LLC miss coverage] 102
[6.9 Comparison against a Slipstream-Like approachl 103

17

Chapter 1: Introduction

1.1 The Problem

Single-thread performance remains an important aspect of improving program
runtime on out-of-order (OoQ) cores. These cores require a steady instruction supply
and fast memory accesses for high performance. The instruction supply is provided by
a wide fetch unit coupled with an accurate branch predictor, while a multi-level cache
hierarchy supported by data prefetchers reduces effective load latencies. However,
despite decades of research, interruptions in instruction supply caused by branch
mispredictions and backend stalls caused by cache misses that cannot be prefetched

remain the two biggest limitations for OoO execution.

T e I

IPC

o o N < & 9

& & & o .be(é\% & Qg’)« 4 \\e, (_)c_ﬁ c’b@v g & & Q‘_ &o‘é’ SR &0@0
i° &S & v’b .@ & S o
QQ} & +'§b b??’ a_c ‘° & < & &

W Baseline @ Perfect BP @ Perfect D-Cache M Perfect BP + D-Cache

Figure 1.1: Eliminating all branch mispredictions and D-Cache misses

illustrates the potential performance gains if these bottlenecks are
addressed in an 8-wide OoO coreﬂ Eliminating all branch mispredictions (for both
direct and indirect branches) improves Instructions Per Cycle (IPC) by 32%, and a
perfect D-Cache provides a 49% IPC improvement. However, prior work has shown
that these bottlenecks overlap in many applications [9]. Addressing them together

reveals their true performance potential, and as seen in the final bar in [Figure 1.1]

1Using a TAGE-SCL branch predictor and an aggressive Stream Prefetcher. The configuration

for the baseline core is provided in
18

this provides a multiplicative speedup of 2.3x. Interestingly, a small subset of static
branches and loads (~256) is responsible for over 95% of branch mispredictions and
load misses — these “hard-to-predict” branches and “long-latency loads” present key

opportunities for improving performance.

Over the years, better branch prediction and load prefetching algorithms have
been proposed to tackle this problem. However, the improvement in prediction mech-
anisms has plateaued recently, particularly for the set of hard-to-predict branches and

load-latency loads (see [Section 2.1). State-of-the-art academic proposals employing

large neural networks that are too complex for hardware implementation only address
~20% of the branch mispredictions [64] (over TAGE-SCL[51]) and only provide ~30%
D-Cache miss coverage [16] (over an aggressive stream prefetcher), leaving a lot of
performance on the table. To bridge this gap, this dissertation focuses on mitigating
the performance penalty associated with branch mispredictions and cache misses by

directly addressing their impact on OoO cores.

1.1.1 Impact of Branch Mispredictions and Cache Misses

A branch misprediction forces the processor frontend to fetch wrong-path in-
structions until the branch is executed. Once executed, all instructions younger than
the mispredicted branch are flushed, and the control flow is corrected. The longer the
branch takes to execute, the more cycles wasted on fetching and processing wrong-
path instructions. These wrong path fetch cycles are responsible for the bottlenecks
associated with hard-to-predict branches, but can be decreased if these branches are

fetched and executed faster.

Loads that miss in the Last-level Cache (LLC) take hundreds of cycles to com-
plete, often causing full window stalls. This prevents subsequent instructions from
entering the processor backend and beginning execution. LLC misses contribute to

most of the performance penalty associated with cache missesﬂ and their correspond-

2A perfect branch predictor and perfect LLC provide an improvement of 2.0x

19

ing stalls are primarily responsible for the bottlenecks associated with long-latency
loads. These stall cycles can be reduced if more long-latency loads are initiated in

parallel, which allows their execution latencies to overlap.

Thus, prioritizing the execution of hard-to-predict branches and long-latency
loads over other instructions can help reduce their performance penalty. However,
these branches and loads cannot be accelerated by themselves- instructions in their
dependence chains are necessary for computing the corresponding branch predicates
and load addresses. Mispredicted branches, loads that access memory, and instruc-
tions in their dependence chains are “critical instructions” as they primarily govern

program performance.

1.1.2 Limitations of the Existing Execution Model

Modern processors fetch and allocatd instructions in program order, which
does not consider criticality. However, there are more “non-critical” instructions
than critical ones - over 85% of the dynamic instructions in the SPEC CPU2017
and GAP workloads on average. This larger proportion of non-critical instructions
contributes minimally to program runtime but limits critical instruction throughput

in two major ways:

Reduction in frontend bandwidth: Critical instructions are sparsely dis-
tributed and interleaved with non-critical ones. Consequently, younger critical in-
structions must wait for older non-critical instructions as fetch is performed in pro-
gram order. This limits the effective frontend bandwidth for critical instructions,

delaying how quickly they enter the processor backend and begin execution.

Fewer window resources: The instruction window from which an OoO
core extracts parallelism is determined by the size of its Re-order Buffer, Physical

Register File, Reservation Stations, and Load and Store Queues (window resources).

3 Assigning Reservation Stations and Re-order Buffer entries to instructions after Rename

20

Critical instructions only occupy 26% of the out-of-order window on average dur-
ing a full window stall (when more window resources are needed). This limits the
amount of parallelism extracted from critical instructions, particularly Memory-Level

Parallelism (MLP), which requires a large instruction window.

These limitations can be reduced by building a wider frontend to improve fetch
bandwidth and a deeper backend to expose more parallelism. However, scaling the
000 core to enable this is expensive as a wider frontend increases pipeline latency [49]
and a deeper backend increases area and power exponentially [43]. Moreover, scaling

only increases the proportion of resources distributed to non-critical instructions.

1.2 Criticality Driven Execution

This dissertation introduces Criticality Driven Execution, a paradigm that
prioritizes the fetch, allocation, and execution of critical instructions within the OoO
core. Criticality Driven Execution (CDE) identifies critical instructions by tracing
highly accurate (>99%) dependence chains for hard-to-predict branches and long
latency loads at runtime. The chains provide over 80% branch misprediction and

LLC miss coverage and are accelerated via two distinct execution models.

First, CDE combines hard-to-predict branch chains into an independent spec-
ulative precomputation thread that issues early pipeline flushes, addressing the fron-
tend bandwidth limitation for these chains. Second, CDE prioritizes the fetch and
allocation of long-latency load chains, utilizing backend resources more effectively to
improve MLP for these chains. Finally, CDE combines these models to provide a

unified solution that addresses both limitations together.

CDE does not use any additional window resources or Functional Units. Non-
critical instructions are delayed and allocated fewer resources to prioritize CDE’s
chains. This allows for more efficient utilization of existing on-core structures without

needing to scale the OoO backend or add additional execution hardware.

21

1.2.1 Identifying Critical Instructions

CDE identifies hard-to-predict branches and long-latency loads at runtime.
It then traces their dependence chains, which are long and often span over 10,000
instructions. The chains are broken into basic block-sized segments and stored in a
dedicated cache. These segments are stitched together at Fetch (using a decoupled

branch predictor) to reconstruct the dependence chains on demand.

This mechanism creates dynamic chains that are accurate for any previously
observed control flow, providing far greater branch misprediction and LLC miss cov-
erage compared to prior work (which is limited to tracing chains within simple control
flows). The reconstructed chains also contain synchronized timestamps that provide

ordering relative to other non-critical instructions.

The chains for hard-to-predict branches and long-latency loads have different
properties. Hard-to-predict branch chains generally have lower latencies and should
be executed as early as possible to ensure the instruction stream is on the correct
path. Long-latency load chains take hundreds of cycles to execute. While these
chains benefit marginally from being initiated early, they primarily require a large
000 window so their loads can access memory in parallel. Given the different sources

of benefit, CDE uses two different execution models.

1.2.2 Precomputation for Hard-To-Predict Branch Chains

CDE uses an independent, speculative precomputation thread consisting of
hard-to-predict branch chains to reduce the misprediction penalty for these branches.
This thread is fetched and executed faster as it contains fewer instructions than the
full program and triggers early pipeline flushes using the timestamps generated while

constructing the branch chains.

The “CDE precomputation thread” uses dedicated Fetch and Rename stages ,
but shares backend resources with the regular instruction stream (the “main thread”).

These resources are freed as soon as possible to allow subsequent precomputation

22

thread instructions to enter the backend. Precomputation thread instructions are
speculative and do not enter the Re-Order Buffer or commit their results. The CDE
precomputation thread provides a 4.3% performance improvement over an aggressive
baseline OoO core (8.3% for branch-intensive benchmarks). Its higher misprediction
coverage allows it to outperform prior work; the CDE chains provide benefit if the
precomputation result is ready before the corresponding main thread branch
is executed, compared to prior work that can only use the precomputation result if

it arrives before the corresponding main thread branch is fetched.

Since CDE’s chains are highly accurate and timely, they provide high perfor-
mance when executed on-core, even though this delays the main thread and executes
two copies of all precomputation thread instructions (18.7% of the dynamic instruc-
tions on average). Using a dedicated execution engine only improves performance by
5.3%, showing that a sizable proportion of the backend resources used by non-critical

instructions can be repurposed without hurting performance.

1.2.3 Preferential Allocation for Long-Latency Load Chains

To improve MLP, CDE dynamically reorders the instruction stream by pre-

emptively fetching and allocating resources for long-latency load chains.

This “preferential allocation” model divides window resources - the Re-order
Buffer (ROB), Reservation Stations, Load and Store Queues, and Physical Registers
- into two partitions. The larger partition is assigned to long-latency load chains,
replacing entries usually occupied by non-critical instructions. This allows multiple
long-latency loads that normally cannot execute together (due to limited instruction
window size) to reside in the backend simultaneously. Preferential allocation thus
expands the sequential window from which parallelism can be extracted

for critical instructions by skipping over the allocation of non-critical instructions.

Unlike the precomputation approach, the prioritized chain instructions commit

their results to avoid the overhead of executing these chains twice. In-order retirement

23

is maintained by comparing the oldest instructions in each partition, facilitated by

the timestamps generated during chain construction.

This approach improves performance by 6%@, higher than prior work targeting
MLP improvement, such as Runahead. Variants of Runahead execution can only
discover MLP during full window stalls, which are limited in processors with larger
instruction windows. Preferential allocation, on the other hand, proactively discovers
MLP by grouping and executing highly accurate long-latency load chains and is energy

efficient as no duplicate instructions enter the backend.

1.3 Building a Unified Execution Model

Improving the performance of both hard-to-predict branches and long-latency

loads simultaneously requires prioritizing certain chains depending on their properties.

The simple approach - combining both types of chains into one large precom-
putation thread has several limitations. Combining these chains increases the density
of the precomputation thread, causing significant backend contention. Supporting
this bigger thread requires a separate core or dedicated execution engine with enough
window resources and functional units (as many as the OoO core itself) to avoid
backend contention. Prior work targeting branch and load chains simultaneously,
like Slipstream [60], (59] and Speculative Multithreading [34], opted for this approach.
The additional hardware roughly doubles the backend area and power. Moreover, a
larger combined thread limit the effective fetch bandwidth for hard-to-predict branch
chains in some applications. This reduces the benefit, even with a dedicated execution

engine.

The preferential allocation model prioritizes critical instructions without ex-

ecuting them twice and does not increase backend contention. While preferential

4Preferential allocation with just load delays branch resolution, and thus needs to prioritize some
branch chains as well. Without branch chains, the performance gain is 3.1%

24

allocation can provide some benefit with hard-to-predict branch chains, it is lim-
ited by ROB capacity and in-order retirement, and thus runs much slower than the

precomputation thread.

Combining the two models provides a means to optimize for both timeliness
(faster chains) and coverage. The precomputation thread mainly targets hard-to-
predict branch chains and a few long-latency load chains that benefit from early
initiation, keeping it lightweight and timely. Preferential allocation accelerates the
remaining hard-to-predict branch chains and most long-latency load chains, maintain-
ing high coverage while reducing backend resource contention. CDE uses a dynamic
algorithm that decides how these chains are accelerated. This provides a 9.0% per-
formance improvement without requiring a dedicated execution engine or separate

core.

1.4 Contributions

The contributions of this dissertation are as follows:

e A runtime mechanism for tracing long and extremely accurate dependence

chains for any branch or load.

e The CDE precomputation thread, that can issue early misprediction flushes
for branches whose precomputation result arrives after the corresponding main

thread branch is fetched (but before it is executed).

e A mechanism that preferentially fetches and allocates resources for long-latency
load chains to improve MLP. Unlike precomputation, these chains commit their

results, utilizing backend resources as effectively as possible.

e A unified model for accelerating hard-to-predict branch and long-latency load
chains simultaneously. This involves assigning specific branch and load chains

to the CDE precomputation thread, ensuring it remains lightweight and timely,

25

while preferential allocation accelerates the rest of the hard-to-predict branch

and long-latency load chains, providing high coverage.

e An algorithm that partitions on-core resources for the CDE precomputation
thread, the critical stream, and other non-critical instructions. This provides
performance comparable to using a dedicated execution engine or separate core

with lower energy and power overhead.

1.5 Thesis Statement

Criticality Driven Execution efficiently utilizes existing window resources to
preferentially fetch, allocate, and execute critical instructions - issuing early mispre-
diction flushes for hard-to-predict branches and improving Memory Level Parallelism
for long-latency loads - thereby reducing the performance penalty associated with

most branch mispredictions and cache misses.

1.6 Dissertation Organization

This dissertation contains seven chapters. provides background on
prediction and outlines relevant prior work. covers the chain construction
mechanism, explaining how hard-to-predict branches, long-latency loads, and their
chain instructions are identified and stored. talks about the CDE pre-
computation thread, explains its benefits, and provides a hardware implementation
to support its execution. introduces preferential allocation, detailing its
key features and the micro-architecture support needed. analyzes chain
properties and provides a unified execution model for accelerating hard-to-branch and

long-latency loads simultaneously. concludes the dissertation.

26

Chapter 2: Background and Prior Work

2.1 Prediction Mechanisms
2.1.1 Branch Prediction

The branch mispredictions discussed in[Section I.1]are partly caused by branches
with complex control flow patterns that are difficult to learn for commercially imple-
mented prediction algorithms such as TAGE [51] and Perceptron [26], even with
larger predictor tables. For instance, an infinite-sized TAGE-SCL [52] only provides
~10% reduction [64] in branch mispredictions over a 64KB TAGE-SCL. State-of-the-
art academic branch predictors such as BranchNet [64] and Whisper [28] attempt to
predict these control flows by incorporating offline training techniques using sophisti-
cated learning models. However, they only achieve an additional ~10% misprediction
coverage. The remaining branch mispredictions come from data-dependent branches
whose targets and directions only correlate with input data, making them inherently

challenging to predict with current algorithms.

2.1.2 Data Prefetching

Data prefetchers face similar problems associated with complex load address
patterns and data-dependent load addresses. Even large neural data prefetchers [16],
55] only reach ~30% D-cache miss coverage with ~80% accuracy. Commercial prod-
ucts today use stream-prefetchers to deal with LLC misses [20], 25, [57] and use PC-
based stride prefetchers [I5] at the D-cache. State-of-the-art academic prefetching
algorithms [41], 42, [44] only provide ~5% more LLC miss coverage compared to a
stream prefetcher (used in the baseline) and struggle to achieve higher coverage with-

out increasing memory traffic significantly.

27

2.2 Precomputation

Precomputation uses dependence chains to compute branch directions and
load addresses ahead of time. If this computation is faster than the main program,
the precomputed branch directions override the conditional branch predictor and the

precomputed load addresses issue prefetches to the memory subsystem.

2.2.1 Compiler Generated Threads

Early precomputation approaches relied on static analysis to identify fre-
quently mispredicting branches, long latency loads, and their dependence chains,
constructing helper threads that operated in a separate context while sharing on-
core resources with the main thread. However, these threads often included many
unnecessary instructions because runtime control flow tends to follow a limited set
of paths, whereas their compile-time analysis accounted for all possible paths to en-
sure correctness. This led to bloated helper threads that executed too slowly to offer
meaningful performance gains. Subsequent work used profiling to remove instruc-
tions corresponding to infrequently seen control and data flows, decreasing the helper
thread size [9] 27, BT, 63], 65], 66]. However, profiling is not always representative and

cannot, capture phase behavior, which limits precomputation accuracy.

Lookahead execution [19, 30] similarly uses a “skeleton” or reduced version of
the main program (created at compile time) to precompute branch directions and load
addresses. It partitions on-core resources to make space for the lookahead thread, but

has poor timeliness, similar to helper threads.

2.2.2 Runtime Precomputation Threads

Runtime-only approaches identify hard-to-predict branches, long-latency loads,
and their dependence chain instructions dynamically. This reduces the number of in-
structions in the precomputation thread, improving its timeliness.

Iterative Backward Dataflow Analysis (IBDA) [8] identifies instructions in

28

long-latency load chains by tagging Register Alias Table (RAT) entries with the
PC of the last instruction that writes to each register. However, IBDA cannot track
memory dependencies, which are required for tracing chains across calls and returns.
Moreover, it only captures a single level of the dependence chain every time the
long-latency load is seen, limiting the overall length of the chain. Since IBDA filters
the normal fetch stream using the identified PCs, it cannot fetch dependence chain

instructions faster than the main thread.

Gupta et al. [2I] use a similar technique for identifying hard-to-predict branch
dependence chains that contain a single load, followed by a few arithmetic operations,
ending at a branch. Tracing these short and simple chains produces timely results, but
provides low misprediction coverage. DP-SSMT [10] uses a dataflow walk to trace
the dependence chains for loads and branches. The generated thread uses trigger

instructions to initiate computation and drive its control flow.

Branch Runahead [40], the prior state-of-the-art in branch precomputation,
identifies lightweight and timely dependence chains in applications with simple con-
trol flows. However, it struggles with more complex control flow patterns (has lower
coverage) and requires a dedicated execution engine to support the parallel compu-
tation of these chains. contains an in-depth comparison against Branch
Runahead.

2.2.3 Slipstream

Slipstream [61] and Dual-Core Execution [24] take the concept of precompu-
tation to its limit by running a copy of the program on a separate OoO core. This
“ahead thread” executes as fast as possible since it runs unhindered on the separate

core without slowing the main thread.

In the most recent Slipstream proposal [59], the ahead thread is constructed at
runtime by removing all control-dependent instructions for hard-to-predict branches,

allowing it to leverage misprediction-level parallelism [35]. While Slipstream offers

29

improved coverage for both loads and branches, the ahead thread is heavy-weight
(executing over 75% of the program’s dynamic instructions) and requires a dedicated
000 core to maintain high throughput for the ahead thread. Using a separate core
reduces performance as the delay associated with communicating precomputed branch
directions and load addresses to the core running the main thread hurts timeliness.
The additional core doubles the area and power overhead, and the extra instructions
increase energy consumption. evaluates the performance and energy of a

Slipstream-like approach with the CDE dependence chains.

2.2.4 Using Precomputation to Resolve Branches Early

Prior work uses precomputation to override the branch predictor, providing
no benefit if the corresponding main thread branch has already been fetched. This is
because they use a unified queue or multiple per-branch queues to forward precom-
puted directions to the branch predictor. These queues are expensive as they buffer
hundreds of predictions per branch and have multiple write ports, as several branches

in the precomputation thread can finish executing together.

Implementing early resolution with these queues (in addition to overriding
the branch predictor) requires support for simultaneous reads from multiple frontend
pipeline stages. Alternatively, the in-flight branch queue and precomputed branch
queues can be scanned in parallel to match precomputation thread branches to their
main thread counterpart. This enables early resolution for branches that have en-
tered the backend as well. However, both solutions increase the hardware cost and
complexity of these queues as they require fully-associative lookups over large queue
sizes (over 300 entries long). Farcy et. al. [I7] use the scanning approach but do
not discuss its implementation overhead. Gupta et.al. [21] only provide a few fixed
flush points in the frontend. The cost of these queues also prevents prior work from

precomputing branch targets for indirect branches.

CDE does not have this limitation as it uses synchronized timestamps: the

30

sequence number for a branch in CDE’s precomputation thread is the same as the
sequence number assigned to the corresponding main thread branch. This allows

CDE to issue early misprediction flushes by reusing existing flush mechanisms. The

details are covered in [Chapter 4]

2.3 Runahead Execution

Loads that access memory generally take several hundred cycles to execute.
Most load addresses cannot be precomputed early enough to hide the full memory
latency. Runahead execution instead initiates memory accesses for future indepen-
dent loads in parallel during full window stalls. This improves memory bandwidth
utilization (if the load addresses are correct), providing most of the benefit associated
with prefetching the load. However, traditional variants of Runahead are only active
during full window stalls, limiting their effectiveness in workloads with fewer stall
cycles. This effect has become more prominent over the years as the window size

continues to grow.

The original Runahead work [37] executes all instructions in Runahead mode
and cannot discover much MLP in processors with a large ROB. Later work [22] 38, [39]
only executes load chains in Runahead mode and uncovers more MLP. However, these
chains have low coverage, often produce inaccurate memory addresses, and are still

limited by shorter full window stalls in many benchmarks.

“Decoupled” versions of Runahead [23] 40] execute load chains on a dedicated
execution engine and are not limited to full window stalls. These are similar to
precomputation-based techniques and have the same pitfalls: they use short chains
with specific dataflow properties that work well for applications with simple control
flows but struggle on more irregular applications. contains a quantitative

comparison against Runahead execution.

31

2.4 Compiler Solutions

Compilers can identify hard-to-predict branches and long-latency through pro-
filing. They can rearrange code by unrolling loops and hoisting hard-to-predict
branches or long-latency loads to compute them earlier in the program or to im-
prove parallelism. This eliminates the hardware overhead of constructing and storing
dependence chains at runtime. However, purely compiler-based solutions have a few
major flaws. They rely on profiling, which is not always representative. Hoisting dis-
tance is limited by architectural register pressure [62] as the associated dependence
chain instructions also need to be moved. Further, the optimal instruction order-
ing depends on detailed microarchitectural parameters that may not be available at

compile time.

CRISP[33] is a lightweight compiler solution with minimal hardware support
that profiles workloads in a data center environment and prioritizes hard-to-predict
branch and long-latency load dependence chains in the scheduling logic. However, its

benefit is limited as it only speeds up their execution by a few cycles.

Control-Flow Decoupling [53] uses the compiler to hoist the control-flow com-
putation within a loop. The hoisted code inserts computed branch directions ahead
of time into a hardware queue read by the rest of the instructions. This is challenging
to do in the absence of loops or for loops with fewer iterations, as significant code

duplication is required to account for all control flows leading to a branch.

2.5 Other Related Work

Speculative multi-threading [34] splits the program into speculative threads at
compile time and executes these threads on a different core to improve Instruction-
Level Parallelism (ILP). It leverages the compiler to find good points to parallelize
code. These threads are not always useful since instruction criticality cannot be

accurately computed at compile time. Balasubramonian et al. [5] use a similar “future

32

thread” that executes (but does not commit) on a partitioned section of the core and

forwards register values to the main thread.

Long Term Parking [50] and Shelf OoO Execution [56] leverage instruction
criticality to improve the efficiency of Reservation Stations, but cannot extract paral-
lelism beyond the capacity of the ROB. Agarwal et al. [3] use instruction criticality and
control independence to reduce in-order fetch bottlenecks. Continual Flow Pipelines
[58] finds independent long-latency load chains in a short loop and uses a ROB-less

architecture [4] to enable a larger instruction window for long-latency loads.

2.6 Baseline Out-Of-Order Core

Core 3.2GHz, 8-wide issue, 12 cycle FE latency, Support for MOV elimination
512 Entry ROB, 256 Entry Reservation Station, 16-wide retire
16 Execution Ports (6-ALU, 2-ST, 4-LD, 4-FP/VEC), Oldest-first scheduling
(3-ALU with BR, 3-ALU with SHFT&MUL, 2-FP with MUL, 2-FP with DIV)
400 Physical Regs, 192 entry load queue, 128 entry store queue
Predictors 64KB TAGE-SC-L[51], 32-entry Fetch Queue
History-based indirect branch predictor, RAS
1 taken per cycle, 8K entry BTB
Caches 32KB 8-way L1 I-cache (4-cycle access) 1R, IW port (2 banks)
48KB 12-way L1 D-cache (4-cycle access), 64B lines (4R 2W ports)
512KB 16-way L2 cache (12-cycle access)
1MB 16-way LLC (18-cycle access), 32 MSHRs

Prefetcher Stream Prefetcher, 64 Streams (always on),
Feedback Directed Prefetching to throttle prefetcher
Memory DDR4_2400R: 1 rank, 2 channels

4 bank groups and 4 banks per channel
tRP-tCL-tRCD: 16-16-16

Table 2.1: Core parameters

The baseline OoO core evaluated in this dissertation uses the x86 ISA. It has
an 8-wide frontend with a decoupled branch predictor [47] that can predict up to
one taken branch or sequential instructions spanning 128B per cycle. Fetch addresses
generated by the decoupled branch predictor are filled into a Fetch Queue. The Fetch
unit uses Fetch Queue addresses to read up to two sequential cache lines from the In-

struction Cache (I-Cache). The Decode, Rename, and Allocation stages handle up to
33

8 micro-operations (uops) per cycle, with 128-entry instruction buffers between Fetch
and Decode. The frontend is 12 stages deep, and the minimum fetch-to-resolution
latency for a branch is 15 cycles. The load-to-use latency for D-Cache (Data-Cache)

hits is 5 cycles. The processor contains a unified Reservation Station with oldest-first

scheduling. All the parameters are listed in [Table 2.1]

34

Chapter 3: Critical Chain Construction

CDE identifies critical instructions at runtime in two steps. First, it de-
tects hard-to-predict branches and long-latency loads via a counter-based mecha-
nism. Then it uses these loads and branches as initiation points for a Backward
Dataflow Walk to trace their dependence chains. The identified critical instructions
are broken into basic block segments and stored in a Block Cache. The CDE precom-
putation thread and preferential allocation eventually use these entries to reconstruct
the constituent hard-to-predict branch and long-latency load chains as needed. This

mechanism was first proposed and later used in my published work[13], [14].

3.1 Marking Hard-To-Predict Branches and Long-Latency
Loads

A small subset of static branches and loads (256) account for over 95% of
branch mispredictions and LLC missesﬂ Prior work uses counter-based techniques [11,
121 46] to track these hard-to-predict branches and long-latency loads. These counters
capture branches and loads above a fixed accuracy threshold. I adapt these techniques
to build two “Critical Count Tables” that mark all branches and loads above a spec-

ified MPKI (mispredictions/misses per kilo instructions) threshold instead.

3.1.1 Critical Count Tables

The Critical Count Tables are independent structures updated at retirement.
The Critical-Branch Count Table tracks direction and target mispredictions for direct
and indirect branches. It is an 8-way set-associative table containing 256 entries,
indexed with the branch Program Counter (PC). Each entry in the table has a 3-bit

saturating counter. An entry is created for a branch when it mispredicts, with its

'The numbers were averaged across Simpoints of length 200M each

35

counter value initialized to 1. Each subsequent misprediction at that PC increments
the counter. A branch is considered hard-to-predict if it has an entry in the Critical-

Branch Count Table and its counter value exceeds 1.

All counters in the table are decremented periodically. This ages out counters
for branches below a specified MPKI threshold. For example, with a decrement period
of 5000 (i.e., the counter value is decremented every 5000 instructions), counters for
branches with MPKI below 0.2 will tend towards 0 as it is decremented more often

than mispredicts are seen.

The Critical-Load Count Table works similarly. When a load misses in the
LLC, an entry is created. The corresponding counter is incremented on subsequent
LLC misses caused by the same load PC, and all counter values are periodically

decremented.

Thresholding based on MPKI instead of accuracy (which prior work uses)
more directly captures which branches and loads contribute to slowdowns within an
instruction window. However, this effect is only prominent in workloads with larger
footprints and does not have a noticeable impact on the SPEC CPU2017 and GAP

benchmarks.

The table parameters determine the number of chains accelerated. This affects
the coverage and timeliness of the execution models, and is evaluated in
and [Section 5.5

3.2 Identifying Dependence Chain Instructions

Dependence chains for marked hard-to-predict branches and long-latency loads
are traced using a modified version of the Backward Dataflow Walk [10] 22]. For this,

instructions are first collected in a post-retire buffer called the Fill Buffer.

36

3.2.1 Fill Buffer

The Fill Buffer holds up to 512 micro-ops (uops). Uops are added to the buffer
after retirement and stored in program order. Retired branches and loads query the
Critical Count Tables before being added to the Fill Buffer. An entry in the Fill
Buffer contains the decoded uop, memory addresses accessed by the uop, whether it
was marked a hard-to-predict branch or long-latency load (as set by the Critical Count
tables), and a bit signifying that the uop is in the marked dependence chains (initially
set to 0). This is summarized in [Table 3.1] Note that the Fill Buffer operates at the
level of uops to avoid decoding chain instructions when they are eventually used. For
simplicity, all the examples in this dissertation contain instructions with a

single uop.

PC | Decoded Uop | Load/Store Address | H2P BR | Long-Lat LD | Chain bit
32 bits 64 bits 32 bits 1 bit 1 bit 1 bit

Table 3.1: Fill Buffer entry

3.2.2 Backward Dataflow Walk

The Backward Dataflow Walk identifies the minimal set of instructions needed
to compute the marked hard-to-predict branches and long-latency loads. It is initiated
when the Fill Buffer is full. The rest of this section explains the chain identification
process in the context of hard-to-predict (H2P) branches, but functions similarly for

long-latency loads.

The example in [Figure 3.1]a shows a code segment containing an H2P branch,
with its assembly and control flow diagram. [Figure 3.1]b shows how the Fill Buffer
is populated when this code segment is executed and retired. The H2P branch is
marked in red. When the Fill Buffer is full, the Backward Dataflow Walk begins.
Starting at the youngest instruction, the Fill Buffer is traversed one entry at a time

until an H2P branch is encountered. Registers and memory addresses needed to

37

Code Snippet

Fill Buffer Block Cache

Basic
Block A | MoV rd,[r5+r6] e TAG Uops

and r6, #1 . PC(Ap) Ao

jne B Ag | mov r4,[r5+r6] PC(Bg) Bo

A1 | add ré,#1 PC(Cg) | Cp C22 C23

Basic - A2 | jne B
Block B | add r4, #64 I Bo | add r4, #64 (c)

jnz C B1 | jnz C

]’ Cog | mov ro,[r4]
y

Basic

mov ro,[r4
Block C »[ra]

J-CZZ cmp ro, #0

cen C23| jne skip

cmp ro, #0

. . youngest

Jne Sklp instruction

(a) (b)

Figure 3.1: Identifying dependence chain instructions in the Fill Buffer

compute that branch are then added to a “Source List”. In the example, Cs3 is the
first H2P branch encountered during the Backward Dataflow Walk, and the condition
code register (RFLAGS for x86) is added to the Source List.

Any instruction that writes to a register or memory location in the Source List
is part of the H2P branch dependence chains. Thus, Cy is marked as a dependence
chain instruction (blue). At the same time, the Cy,’s destination register (RFLAGS)
is removed from the Source List, and Csy’s source register (R0) is added instead. This
ensures that the Source List tracks the minimum set of live-ins needed to compute

the marked H2P branches.

Continuing upwards, Cj is marked as a dependence chain instruction, and
the Source List is modified to contain register R4 and memory location [R4]. The
Backward Dataflow Walk continues until it reaches the oldest instruction in the Fill

Buffer, marking all the instructions highlighted in blue. Note that chains for all

38

branches marked as H2P, including multiple dynamic instances of the same
H2P branch, are traced simultaneously via this mechanism. In contrast, prior
work [10L 22], 46] only used the Backward Dataflow Walk to trace dependence chains
one branch at a time and terminated the Walk after seeing a second instance of the

branch being traced, limiting their chains to short loops.

3.2.2.1 Hardware Implementation

Uops are initially added to the Fill Buffer after the Decode stage since the
decoded uops are not available at Retire (these are overwritten on a misprediction
flush). After retiring, uops populate the rest of the fields in their Fill Buffer entries.
Memory addresses are read out when the corresponding Load or Store Queue entry is
retired. Alternatively, after address generation for a uop is completed, the addresses
with their corresponding sequence numbers can be saved in a separate buffer until

retire (indexed by sequence number and does not require associative lookups).

The Backward Dataflow Walk takes ~500 cycles and is managed by a state
machine. Register dependencies are tracked using a bit-vector with one bit per-
architectural register. Memory dependencies are tracked using a small 32-entry buffer
that records load addresses. Together, these structures form the “Source List” men-

tioned earlier.

Instructions retired during the backward Dataflow Walk are discarded. The
Fill Buffer thus only samples a portion of the retired instruction stream. Performance
is not sensitive to the duration of the Backward Dataflow Walk, and the associated
structures do not need multiple access ports to perform the walk faster or capture
all retired instructions. The Fill Buffer size does not affect performance significantly

(<0.5% change) as I use bit-masks to extend dependence chains, as explained in

Bection 3.5

39

3.2.3 Storing Dependence Chain Instructions

The marked dependence chain instructions (including hard-to-predict branches,
whose chain bit is also set) are split into basic block-sized segments and stored in a
“Block Cache”. Block Cache entries are tagged with the PC of the first instruction
in that basic block c). These entries are later stitched together using
predictions generated by the branch predictor to reconstruct the dependence chains

at fetch time. This is discussed in Section 3.7

3.3 Tracking Memory Dependencies

The Source List tracks memory dependencies as correlated loads and stores
affect chain accuracy. This is most commonly seen when an H2P branch is within
a function body. In such cases, the function’s input variables are often part of the
dependence chain. The push and pop operations that communicate these variables
need to be included in the dependence chain to trace instructions beyond the function

boundary.

Unlike register dependencies, memory addresses corresponding to correlated
load-store pairs can change over time. Thus, incorporating memory dependencies
sometimes increases chain size without improving its accuracy. However, the overall
improvement in the length and accuracy of the dependence chains makes up for this

in most benchmarks.

3.4 Tracing Longer Dependence Chains

Longer dependence chains improve timeliness as they initiate the computation
for the corresponding hard-to-predict branches and long latency loads earlier. How-
ever, the maximum chain length that can be traced is limited by the Fill Buffer size
and the position of the H2P branch in the Fill Buffer. Using chain instructions as

initiation points for the Backward Dataflow Walk (the next time they are seen in the

40

First Time Second Time Third Time
mov r4,[r9]
add ré,#8 D3 | add r5,#1 Az | jne skip Ag | mov r4,[r9]
jne skip Dy | cmp r5,r7 3 By Ay | add re,#8
Basic D5 | jne loop By cee Ay | jne skip
| Block A Do B Bo
Dy B3 | add ré,#8 By
add ré,#8 D, Co B,
Basic Basic D3 | add r5,#1 C “ee B3 | add r6,r6,#8
Block B Block C Dy | cmp r5,r7 C, .. Co .
Ds | jne loop C3 . Cq .
mov r7,[r4+ré] Do e C4 | mov r7,[rd+r6] C
Dy ... Do L. C3 .
Dy . Dy . Cq | mov r7,[r4+re6]
Toop: D3 | add r5,#1 D, Dg
add rs5,#1 Dg | cmp r5,r7 3 D3 | add r5,#1 Dy
5
cmp r5,r7 Ds | jne loop Dy | cmp r5,r7 D,
jne loop
Basic Dependence chain: Dependence chain: Dependence chain:
Block D D3 D4 Ds B3 C; D3DyDs Ag Ay Bz C; D3DyDs

(a) (b) (c) (d)

Figure 3.2: Tracing longer dependence chains using previously marked instructions

Fill Buffer) overcomes this limitation.

The example in [Figure 3.2la depicts this. This code snippet contains a loop
branch that is H2P. Only a few instructions in the dependence chain of this H2P
branch can be traced the first time it is seen in the Fill Buffer (Figure 3.2lb). The
main thread keeps track of this information, and corresponding uops preemptively
set their chain bit the next time they enter the Fill Buffer. [Figure 3.2.¢ depicts a
future Fill Buffer iteration. The Backward Dataflow Walk in this case is initiated
at dependence chain instructions (highlighted in red this time) instead of an H2P
branch. Additional instances of the Backward Dataflow Walk (Figure 3.2]d) trace
more and more of the dependence chain. The individual basic block segments are

then stitched together, which allows CDE chains to span thousands of instructions.

3.5 Combining Chains across Multiple Control Flows

An H2P branch can have different dependence chains for each control flow

leading up to it. shows such an example. Under the control flow A-B-D,
41

loop: .
mov ril,[r4+r5] Basic
Block A
and r5, #1
jne assign_b
Basic Basi
. aslc
1 for(i=6 to N-1) { Block B Block C
2 a = arrayl[i] *
mov re, ri assign_b:
jump merge
4 if(i%2==0) T
x = a v
. else - merge: | cmp ro, #0 Basic
jne skip Block D
8 if(x==0) Basic
N o Block E l
e // ...
1 }
red : H2P
branch
blue : Dependence chain skip: Basic
instructions in first path p: Block F
add rs5,#1 oc
cmp r5,r7
green : Dependence chain ‘ne 1oo
instructions for both paths J |p

Figure 3.3: Tracing dependence chains across multiple control flows

the first instruction in basic block A is part of the dependence chain (in blue) for the
H2P branch (in red). For A-C-D, the second instruction in basic block A is part of the
dependence chain (in yellow). Saving the longest or the most recent dependence chain
produces incorrect results if the saved chain does not match the actual control flow
during fetch. Saving all possible chain versions is not viable as each additional branch
added to the control flow (branch at the end of block A, for example) exponentially

increases the number of possible chains.

Combining chains from multiple paths ensures the chain is correct across all
these paths. This is done by storing a bit mask for each basic block that specifies which
instructions in that basic block are part of H2P branch chains. Different versions of

this bit-mask can be combined by bit-wise ORing them. In[Figure 3.3} two masks are

42

generated for basic block A: 1000 for control flow A-B-D and 0100 for control flow
A-C-D. The “1” in the bit mask indicates that the instruction is part of the chain.
After bit-wise ORing, both the first and second instructions in basic block A are
marked and saved in the Block Cache. This adds extra instructions (not needed to
compute the H2P branch) to both paths but ensures the H2P branch chain is correct
under both control flows. The masks are stored as part of the Block Cache entry for

that basic block.

3.6 Steady State Operation

shows an overview of all the components. The Critical Count Tables
are always active; retired branches and loads that access memory continuously update
these tables independently of the Fill Buffer. Two additional bits in the ROB are
added to track mispredicted branches and loads that miss in the LLC, which filter out
the branches and loads that update the Critical Count Tables. In parallel, the Fill
Buffer captures retired instructions (while querying the Critical Count Tables) until
it fills up. When full, the Backward Dataflow Walk is initiated, and the identified
chains uops are filled into the Block Cache.

Main thread instructions that were part of the CDE precomputation thread or
the critical stream are marked with an additional bit in the ROB. This bit is carried
along to the Fill Buffer and preemptively sets the chain bit in the Fill Buffer. This

allows the Backward Dataflow walk to be initiated at previously marked chain uops,

tracing longer chains as discussed in [Section 3.4}

3.6.1 Block Cache

Uops with their chain-bit set after the Backward Dataflow Walk are divided
into basic block segments and stored in the Block Cache. The Block Cache has 512
entries and is divided into a tag store and a data store. The tag store holds a 40-bit

tag (PC of the first instruction in the basic block). The data store contains decoded

43

T0

BLOCK <
CACHE

FROM

Backward Dataflow Walk

State-machine

PC|Critica1 Uops|Mask|

REG LIVE-INS
VECTOR

LD ADDR
TRACKING
BUFFER

A
Y.

All retired uops +
previously critical uop bit

Insert if not
full, else drop

T A

RETIRE
STAGE

Tag

Counter

All Branches .

> [Eo]

UPDATE

IS_H2P_
BRANCH?

A
Mispredicted
Branches

All

CRITICAL BRANCH
COUNT TABLE

Tag

Counter

Y

Loads .
CTR > 1? .

A

\

IS_LONG_
LATENCY_

UPDATE LOAD?

LLC Miss 0

Loads

CRITICAL LOAD
COUNT TABLE

Basic Block
Segment

FILL
BUFFER

Figure 3.4: Implementation overview: Tracing dependence chains

dependence chain uops (4B per uop on average), the bit-mask (32 bits long), and

the number of non-chain uops skipped (which are used for computing timestamps at

Fetch).

On a tag match, the existing, older basic block segment is read out. Its bit-

mask is ORed with the bit-mask for the incoming, newer basic block segment. The

44

corresponding uops are combined, and this combined basic block segment and bit-
mask are then written to the Block Cache. Note that the fill operation is off the
critical path and does not impact cycle time. This combines chains across multiple

control flows as discussed in [Section 3.5l

In most benchmarks, over half the basic block segments contain no chain uops
for hard-to-predict branch and long-latency load chains. To optimize storage capacity,
a smaller 256-entry tag store is reserved exclusively for basic block segments with no
dependence chain uops. These do not need data store entries as they contain no chain
uops and their bit-masks are zero. This tag store captures cases where a dependence
chain traverses intermediate basic blocks with no chain uops and directs the Fetch
unit not to terminate the dependence chain, as there may be more chain uops past

the empty basic block segments.

Periodically resetting the bit-masks: Some control flow patterns are only
observed during specific execution phases. Dependence chains captured with older
control flows may not be valid after a phase change and therefore need to be removed
to keep the chains lightweight. This is done by periodically resetting the bit-masks in
the Block Cache and overwriting the existing basic block segments. The periodic reset
ensures that future Backward Dataflow Walks do not use the bit-mask instructions
as initiation points if they are no longer critical in the current execution phase. A

reset period of 500K instructions worked best for performance.

3.7 Reconstructing the Dependence Chains at Fetch

Fetch addresses generated by the decoupled branch predictor in the baseline
000 core are forwarded to the Block Cache, which has a dedicated Fetch unit coupled
to it. The Block Cache retrieves the corresponding basic block segments at these

addresses and stitches them together to reconstruct the stored dependence chains.

Figure 3.5/ shows how this works for the example in The control

flow diagram for the code and corresponding Block Cache entries are repeated in

45

Code Snippet

Basic
Block A mov r4,[r5+r6] Block Cache Reconstructed . | Timestamps
ocC d Dependence Chain
and r6, #1 TAG Uops
jne B PC(Ag) Ao mov r4,[r5+re] 1 (+1)
PC(Bg) Bg add r4, #64 4 (+3)
mov ro,[r4] 6 (+2)
Basic ’ PC(Co) | Ca C22 C23
0, #0 28 (+22
Block B | add ra, #64 e (+22)
- jne skip 29 (+1)
J (b)
(d)
. r The decoupled branch predictor
Basic mov ro [I"4] generates the fetch address
Block C ’ sequence:
[PC(Ag), 3]
[PC(Bo), 2]
“ee [PC(Cp), 24]
cmp ro, #0
jne skip (©)
(a)

Figure 3.5: Fetching uops from the Block Cache

a and [Figure 3.5b. After the Backward Dataflow Walk completes, the

program control flow reaches the same code snippet again, as it is part of a loop or a

function that is called repeatedlyﬂ

The baseline decoupled branch predictor uses the current program counter
(PC) to generate the next address at which instructions are fetched and the number
of instructions to be fetched at that location. For this code snippet, the fetch addresses
generated are shown in [Figure 3.5l c. This takes 3 cycles, as the branch predictor has

a throughput of one taken branch per cycle.

These fetch addresses are sent to the I-Cache (for the main thread) and the
Block Cache in parallel. On a hit in the Block Cache, the CDE precomputation thread

(or the critical stream in case of preferential allocation) is initiated. The chain uops

2Note that CDE can only improve a hard-to-predict branch or long-latency load if its dependence
chain is seen multiple times

46

corresponding to the fetch address are read out of the Block Cache in 3 successive
cycles and stitched together to reconstruct the stored dependence chain as seen in
[Figure 3.5ld. Regular fetch for this example would require more than 3 cycles as the

instructions in basic block C cannot be fetched in a single cycle.

The number of skipped non-chain uops stored in the Block Cache is used to
compute the timestamp for the chain uops. The computation is done in parallel with
the rest of the Fetch stage processing and does not impact the critical path. This
approach of capturing and stitching together basic block segments is similar to prior

work on trace caches [I8, 145, 48], except we only do this for critical instructions.

47

Chapter 4: Speculative Precomputation for
Hard-To-Predict Branch Chains

Prior work has shown hard-to-predict branch chains usually have shorter la-
tencies compared to other instructions and run faster when executed independently.
To speed up their computation, I combine hard-to-predict branch chains into an in-

dependent, speculatively executed thread that precomputes branch directions.

4.1 CDE Precomputation Thread

Code snippet CDE Other

Commonly seen in benchmarks Precomputation Precomputation

like mcf, nab, cc, tc Thread Threads
1 |arrayl[t] =y 1 |arrayl[t] =y
2 x = arrayl[i]
3 if(x==0)
4 |for(i=0; i<N) { 13 i++
5 if(func(i)) X = array2[i]
6 X = arrayl[i] if(x==0) 5 if(func(i))
7 else 13 i++ 6 x = arrayl[i]
8 X = array2[i] 9 if(x==0)
9 | if(x==0) 13 | i+
10 /] ... 7 if(!func(i))

*The control flow generated by the
11 /* long code branch predictor fetches the if 8 x = array2[i]
12 | block nere */ Slock n the first doop Meration, |5 | s (xem0)
13 | i++ } loop iteration 13 i++
(a) (b) (c)

Figure 4.1: CDE precomputation thread example

The example in shows how the CDE precomputation thread works.

The code snippet in [Figure 4.1}a contains a hard-to-predict branch on line 9 (high-
lighted red). The control flow generated by the branch predictor fetches and executes

48

the if code block in the first loop iteration, and the else code block in the second loop

iteration.

The CDE precomputation thread, shown in [Figure 4.1]b, is constructed by
stitching together basic block segments at fetch addresses generated by the branch
predictor as explained in [Section 3.7] It contains fewer instructions compared to
the main thread and can thus be fetched faster (limited only by the branch predic-
tor throughput). Given enough resources, the CDE precomputation thread executes
multiple instances of the hard-to-predict branch and issues the corresponding mis-
prediction flushes (if any) a few cycles before the main thread. The earlier the pre-
computation thread starts, the more opportunities it gets to run ahead of the main

thread, saving more cycles of misprediction penalty.

When a precomputation thread branch is found to be mispredicted, the exist-
ing infrastructure uses the branch timestamp (generated during chain reconstruction)
to issue a pipeline flush. This flushes instructions younger than the mispredicted
branch in both threads. Fetch for both threads then resumes at the same point,
i.e., their states are synchronized. The precomputation thread starts running ahead
again, looking for the next misprediction. Thus, the CDE precomputation thread

reduces the time between successive mispredictions.

4.1.1 Benefits of using the Main Branch Predictor

Non-H2P intermediate branch direction can affect which instructions are part
of hard-to-predict branch chains. The branch on line 5 in is one such
example. Prior work attempts to deal with these branches by either assuming the
majority direction (which decreases chain accuracy) or by also precomputing their
dependence chains (which adds many additional instructions, decreasing timeliness).

Most recent work, including the prior state-of-the-art, Branch Runahead, chose the
later approach (Figure 4.1}c).

The CDE precomputation thread, on the other hand, does not need to compute

49

intermediate branch directions. It uses fetch addresses generated by the main branch
predictor (TAGE-SCL) to stitch together basic block segments that comprise the
traced dependence chains. TAGE-SCL predicts non-H2P intermediate branches with
very high accuracy (>99.9%) and the chains reconstructed using these predictions
are thus also accurate. TAGE-SCL also predicts many hard-to-predict branches with
over 80% accuracy, allowing the precomputation thread to correctly fetch instructions

past them without waiting for the H2P branch to resolve.

Some prior work fetches branch chains faster than the CDE precomputation
thread as they either ignore or statically predict intermediate branch directions,
whereas the CDE precomputation thread has to wait for the main branch predic-
tor to generate fetch addresses. This only works if the intermediate branches are
biased. Prior work can also deal with intermediate branches if the chains are control
independent, i.e., the dependence chain is unaffected by the direction of these inter-
mediate branches [35, 46]. This works well in benchmarks where simple control flows
are common, but provides very little performance in applications with more complex
control flows as the opportunities for exploiting control independence are limited.
The CDE precomputation thread performs well on both classes of applications as it
can capture some of the benefit associated with control independence when TAGE

predicts these intermediate branches accurately.

Traversing complex control flows also leads to longer chains. As seen in
the CDE precomputation thread traces dependence chain instructions be-
yond the loop boundary and starts precomputation much earlier. It thus provides
benefit even if the first instance of the hard-to-predict branch mispredicts. Other
precomputation mechanisms either start after an initial misprediction is observed or
at deterministic initiation points like the loop boundary. This flexibility allows the

CDE precomputation thread to provide coverage far beyond what prior work achieved

(~75% for CDE vs ~20% for prior work).

20

4.1.2 Load Prefetching Effect

Some benchmarks have many long-latency loads within hard-to-predict branch
chains. The CDE precomputation thread speeds up both types of chains in these
benchmarks, providing some of the multiplicative benefit described in [Section 1.1}
This is evaluated in [Section 4.6.3] However, the benefit is limited due to backend
contention - an important observation that helps construct a unified model to address

hard-to-predict branches and long-latency load simultaneously, which is discussed in

detail in [Chapter 6

4.2 Implementation Overview

Block
Cache

Store Data

Rename

Cache Fill Buffer
CDE Written to by Scanne d by
. Initatialized i i
Precomputation - - - -» ataliz pr utaito thread | pr o thread
Block Cach -

Thread ock Fache Critical

Branch

4 extra write l ICount Table]
ports into RS for oc PC+
Main Thread - - - -» precomputation decoded uop
thread

Execute

ROB "‘ Retire

Bra_n C.h Fetch Decode Rename Allocation RS
Prediction

|-cache

Physical
Register
Map Table’

Partitioned RSes and
Physical Registers

Figure 4.2: Implementation overview: Precomputation for hard-to-predict branches

An overview of the additional hardware required to construct, fetch, and ex-
ecute the CDE precomputation thread is shown in The Critical-Branch
Count Table and Fill Buffer located in the backend are responsible for identifying
hard-to-predict branches and tracing their dependence chains. The precomputation
thread has dedicated 8-wide shadow Fetch and Rename Stages. The shadow Fetch
stage uses the fetch addresses inserted into a shadow Fetch Queue by the decoupled
branch predictor to stitch together basic block segments from the Block Cache.

The Fill Buffer and Block Cache operate on uops instead of instructions. This

o1

reduces the overall frontend latency for the CDE precomputation thread to 9 cycles.
A shadow RAT manages precomputation thread dependencies. The precomputation
thread and the main thread converge at Allocation, with 4 dedicated allocation ports
added for the precomputation thread, while the remaining 8 are shared between the
two threads. A fixed partition of Physical Registers and Reservation Stations is
reserved for the precomputation thread when it is active (when inactive, these entries
are used by the main thread). Precomputation thread instructions do not enter the
ROB, and their Physical Registers are freed using a separate Physical Register map
table. The precomputation thread has a small Store Data Cache for buffering store
values. The parameters for all these structures are summarized in The
next few sections provide detailed descriptions for all the components other than the

Fill Buffer and Critical-Branch Count Table (previously covered under [Chapter 3)).

Core Dedicated 8-wide Fetch and Rename Stages, 9-cycle latency
Allocation-ports shared with the main thread, 4 extra ports for precomputation thread
256 PRs, 128 RSes reserved for precomputation thread when active
Caches Critical-Branch Count Table: 256-entry cache, 0.2KB, 1-cycle access, Dec period: 10k

Block Cache: 512-entry cache, 256 zero-tags, 8-way, 19KB
Store data cache: 64 entry cache (32B per entry)
Other Fill Buffer: 512-entry queue, 8KB, single access port
structures PR map table, 2400 bits, Shadow RAT

Table 4.1: Structure sizes for the CDE precomputation model

4.3 Frontend

The shadow Fetch stage is connected to the Block Cache and is accessed every
cycle. On a hit, the precomputation thread is initiated. The precomputation thread
fetches instructions at a higher rate than the main thread and thus consumes fetch
addresses faster. To account for this mismatch, the Fetch Queue for the main thread
is larger than a normal Fetch Queue (can hold up to 128 fetch addresses). This
buffers more fetch addresses for the main thread, allowing the Branch Predictor to

run further ahead and match the precomputation thread’s throughput.

52

4.3.1 Fetch

To support 8-wide fetch from the Block Cache, basic block segments belonging
to a single cache line are stored in different ways with the same cache-line index,
similar to the Block-Based Trace Cache [7]. Segments longer than 8 sequential uops
are divided into multiple entries. The shadow Fetch unit reads out all Block Cache
entries in two consecutive cache lines for a given fetch address. Combining these
sequential segments allows the Block Cache to deliver up to 8 uops per cycle. More
efficient trace cache designs, such as those proposed by Patel et.al. [45], can be adopted
to improve the Block Cache’s throughput.

The bit-masks for the read-out Block Cache entries are added to a small queue
that feeds the main thread. This marks uops in the main thread that are part of the
precomputation thread so they can be used as initiation points for the Backward

Dataflow Walk in the Fill Buffer after retirement.

4.3.2 Rename and Allocation

When the precomputation thread is initiated, the contents of the main RAT
are copied into the shadow RAT to synchronize the state of both threads. After re-
naming, instructions are sent to the allocation logic, which prioritizes precomputation
thread instructions. The dedicated frontend, preferential access to allocation slots,
and partitioned backend ensure that the precomputation thread is not blocked due

to back pressure caused by main thread instructions.

4.4 Backend

The precomputation thread is extremely accurate (less than 0.7% of its branches
are incorrectly computed) and timely (~ 75% of precomputation thread branches save
at least one cycle of misprediction penalty). Thus, prioritizing the allocation of pre-
computation thread instructions performs well, even though it delays the execution

of main thread instructions.

93

A maximum of 128 Reservation Stations and 256 Physical Registers are given
to the precomputation thread when active, allocated on a first-come-first-served basis.
When inactive, all Reservation Stations and Physical Registers are given to the main
thread. The partition is managed by two registers - one for Reservation Stations and
one for Physical Registers, which keep track of the number of precomputation thread
instructions using these resources. Instructions from both threads share Execution
units, cache ports, and MSHRs (Miss Status Handler Registers). Precomputation
thread instructions are identified by an additional bit in the Reservation Stations and
are discarded when they finish execution. The scheduling logic is oldest-first (based on
when they enter the Reservation Stations), which naturally prioritizes precomputation

thread instructions as they are given allocation priority.

4.4.1 Freeing Physical Registers

The precomputation thread only maintains a speculative RAT. Its instructions
free up backend resources as soon as possible to avoid the in-order retirement bottle-
neck. Precomputation thread instructions use a separate table containing a Valid bit
and a 5-bit Reference Counter per Physical Register (PR) for identifying PRs that
can be freed. These are initialized to 1 and 0, respectively, when the precomputation
thread is initiated. When a precomputation thread instruction is renamed, it sets the
Valid bit for the previous PR mapped to its destination Architectural Register (AR)
to 0. If this previous PR is not currently being used (Valid=0, Reference Counter=0),

it is freed.

Every instruction that wants to read from a PR increments its Reference
Counter at Rename. The counter is decremented when the instruction reads the
data value for that PR, just before it enters the Execution Units. After decrementing
the counter, if it is also invalid (Valid=0, Reference Count=0) because a younger in-
struction overwrote its mapping, the PR is freed. This works because no instructions

in the Reservation Stations need to read this PR, and instructions in the frontend

o4

Physical

; PRO PR1 PR2 PR3 cee PR399
Register ID
Valid 1 1 (4] 0
Reference
4 0 (<] 7
Counter | |
| [
; —¢ l \ 4
PR has a valid AR PR in PR was overwrriten,
mapping, 4 PR has a valid AR free list 7 instructions
instructions need mapping, no instructions still need to read
to read the data in need this PR value yet the old data in
this PR this PR

Figure 4.3: Physical Register Map Table

will use the new mapping for that AR. shows what various combinations
of the Valid and Reference Counter bits specify.

This approach is similar to prior reference counter-based mechanisms for Re-
naming [4, 36], but does not incur the overhead of stalling execution to prevent counter
overflows. If the counter overflows, the precomputation thread frees a Physical Reg-
ister before all its consumers begin execution (this does not affect the main thread),
and may lead to incorrect execution. However, this is rare since the precomputation
thread is frequently flushed and does not impact precomputation thread accuracy

much.

4.4.2 Dealing with Stores

Precomputation thread instructions do not change the processor’s architec-
tural state. Loads in the precomputation thread are treated as prefetches and are
not allocated Load Queue entries. They leave the Reservations Stations when they
have a D-cache port and carry their destination PR in the corresponding MSHR
entry. However, precomputation thread stores cannot write to the D-cache as they
update the machine’s architectural state. Instead, they write to a small side cache
that buffers the last 64 half-lines (32B) written to by precomputation thread stores.

Precomputation thread loads read data from both this cache and the D-cache.

95

4.4.3 Branch Misprediction Flushes

When a mispredicted branch that is part of the precomputation thread finishes
execution, a flush operation is triggered. Precomputation thread branches have the
same timestamps as their main thread counterparts (computed during Fetch), and this
timestamp is used to flush all instructions younger than the mispredicted branch (both
the main thread and precomputation thread instructions). The processor backend is
partially flushed exactly as it would be in a normal OoO core, and the checkpointed
or recovered state of the RAT is copied over to both the main RAT and the shadow
RAT. This, along with fixing the Branch Predictor history and PC, synchronizes the
state of both threads.

Partially Flushing the Frontend: Normally, when a branch misprediction
is detected in the backend, all the frontend pipeline stages are flushed. However,
CDE supports partial flushes in the processor frontend, i.e., instructions older than
the mispredicted branch in the frontend pipeline stages are not flushed. This situation
arises when the precomputation thread runs so far ahead that the main thread branch
being flushed is in the frontend. In this case, some main thread instructions in the
frontend are older than the mispredicting branch and should not be flushed. This is
enabled by adding a comparator before the flush signal for each pipeline stage, which
compares the timestamp of the oldest instruction in that stage and the mispredicting
branch. The comparator latency overlaps with other tasks performed during the
flush operation, such as fixing the branch predictor history, and does not impact
the overall misprediction flush latency. The Fetch Queue is also partially flushed -
when this happens, the full misprediction penalty for that branch is saved. Note
that when the frontend is partially flushed, the state of the main RAT does not need
to be recovered. Only the shadow RAT needs to be fixed, and this is achieved by
checkpointing the contents of the shadow RAT instead of the main RAT when the

precomputation thread is running far ahead of the main thread.

When a precomputation thread branch resolves, the in-flight branch queue

o6

entry (which tracks information for all in-flight main thread branches) for the corre-
sponding main thread branch is modified to reflect the precomputed branch direction
and target. When the main thread branch finishes execution, it reads the in-flight
branch queue to check whether the misprediction was resolved correctly. If the pre-
computation was incorrect, another misprediction flush is issued to correct the control

flow. However, this is rare (< 0.001 PKI) and its impact on performance is negligible.

4.4.4 Terminating the CDE Precomputation Thread

The precomputation thread is terminated on a miss in the Block Cache or
when a precomputation is incorrect. On a miss, the remaining instructions continue to
precompute branch directions until all remaining precomputation thread instructions
have been executed. When an incorrect precomputation is detected, all younger

precomputation thread instructions are drained from the processor.

Incorrect precomputations can be detected in two ways. The first examines
the precomputed branch directions and targets saved in the modified in-flight branch
queue entry (as explained above) and serves as a fail-safe. The second uses the bit-

masks carried along with the main thread instructions.

When the precomputation thread is initiated, a poison bit in the main RAT
is initialized to O for all ARs. Main thread instructions not part of the H2P branch
dependence chains (have a 0 in the bit-mask) set the poison bit for the AR they write
to. Main thread instructions that are part of the dependence chains (have a 1 in the
bit mask) clear the poison bit for their destination AR. If a main thread instruction
that is part of the H2P branch dependence chains (has a 1 in the bit-mask) reads from
a poisoned register, it is flagged as incorrect. This is because reading from a poisoned
register implies that the dependence chain instruction needed a result produced by a
non-dependence chain instruction (after the precomputation thread started), which
is incorrect behavior. Following this, precomputation thread branches that have not

been executed yet and are younger than the instruction that caused this dependence

o7

Code Snippet, backward Dataflow Walk

performed only with I1 taken CDE Precomputation Thread
I0: RO <- RO - 1 I0: RO <- RO - 1

I1: INZ I3 I3: R1 <- [R3+RO]
I2: R3 <- R3 - 2 I6: INE I8

I3: R1 <- [R3+R0O]
I4: R4 <- [0Ox200+R0O]
I5: [RO] <- R4 >> 2
I6: INE I8

17: [0x300+R7] <- R2
I8: INZ Io

INCORRECT WHEN BRANCH
I1 IS NOT TAKEN!

Figure 4.4: Example of an incorrect precomputation thread

V. Arch Reg Phys Reg P V. Arch Reg Phys Reg P V. Arch Reg Phys Reg P
1 cc - 0 (4 cc Po 0 0 cc PO 0
1 RO - 0] RO P1 [“] 0 RO P1 2]
1 R1 - 0 1 R1 - 0 1 R1 - 4]
1 R2 - 0 1 R2 - 0 1 R2 - 4]
1 R3 - (] 1 R3 - 0 1 R3 - 4]
1 R4 - 0 1 R4 - 0 1 R4 - 4]
(a) State of RAT before the (b) After Renaming I@. Part of (c) After Renaming Il
code snippet precomputation thread, clear (no destination register)

poison bit

0 cc Po 0 I3: R1 <- [R3+RQ]

° Ro Pl 0 I3 is part of the

1 R1 - 0 precomputation thread but
reads from a poisoned

1 R2 - 0 register (R3)

° R3 P2 1 Chain incorrect I3 onward!

1 R4 -)

(d) After Renaming I2. Not (e) While renaming I3

marked part of precomputation
thread, set poison bit

Figure 4.5: Sequence of events leading up to the detection of an incorrect chain

violation are blocked from triggering misprediction flushes. Precomputation is termi-
nated, and the rest of the precomputation thread instructions are gradually drained
from the backend. This helps filter out most incorrect precomputations without re-
quiring a second flush, reducing the number of additional misprediction flushes to

below 0.001 PKI (per 1K instructions).
Figure 4.4] contains an example showing an incorrectly constructed precompu-

o8

tation thread. The Backward Dataflow Walk for this code snippet was performed only
with branch I; being taken. This excludes instruction I, from the dependence chain.
However, if during subsequent execution, branch I; is not taken, the dependence chain
is incorrect. Precomputation results produced by this chain are likely incorrect until
the new control flow is recorded in the Fill Buffer. The register poisoning scheme
preemptively detects such scenarios and terminates the precomputation thread. The
sequence of events involved in the detection is shown in [Figure 4.5] These termi-
nations occur with a frequency of less than 0.01 PKI, and thus have no noticeable

impact on performance.

Late Termination: The precomputation thread is also terminated if its com-
putation is “late”. This happens when the precomputation result arrives in the same
cycle that the main thread branch is executed, or after the main thread branch is
executed. In either case, no misprediction penalty is saved. If only late precompu-
tations are seen within the last 100K retired instructions, precomputation is turned
off for 1M (retired) instructions. This primarily occurs when the precomputation
thread contains most instructions in the program (but is allocated fewer Reservation

Stations and Physical Registers).

4.5 Hardware Overhead

The CDE precomputation thread increases dynamic instruction footprint by
18.7% on average. This is much lower than Slipstream [59] (85%), which targets
both load and branches, and is comparable to Branch Runahead [46] (34%). Since it
executes instructions on-core rather than using a separate execution engine or core,
the CDE precomputation thread is more efficient than prior work. McPAT[32] is used

to estimate area, power, and energy consumption.

Area: The main area overhead comes from the Fill Buffer and the Block
Cache. The duplicated pipeline stages and shadow RAT also add to this. This is

approximately 3.5% of the total core area, with over 2% coming from just the caches

29

and Fill Buffer. Comparatively, a true 16-wide OoO core is much more challenging

to implement: it costs ~10% more area while only providing 2.1% performance.

Power: The additional structures increase peak power by 8.5% according to
McPAT. The additional frontend is responsible for over 6% of the additional power,
particularly the Block Cache, Rename stage, and the shadow RAT.

Energy: The increased dynamic instruction footprint leads to increased Fetch,
Rename, and backend energy in addition to the energy consumed by the new struc-
tures. However, this is mitigated by the reduction in overall execution time and the
reduction in wrong-path instruction fetches for the main thread. According to Mc-

PAT, the overall energy consumption in our evaluated benchmarks reduces by 1.8%.

4.6 Evaluation
4.6.1 Methodology

I use Scarab[I], an execution-driven cycle-accurate x86-64 simulator, to simu-
late the micro-architecture of an aggressive OoO core augmented with the additional

structures and logic needed for CDE. Main memory is modeled using Ramulator[29].

Benchmarks I use SPEC CPU2017 benchmarks[2] with the ref input set and
the GAP benchmarks suite[6] (with inputs g=19 and n=300) in all my evaluations.
The SimPoint[54] methodology is used to find representative regions and generates
up to 5 Simpoints per benchmark, with 200 million instructions per Simpoint. Each

run is preceded by a warmup period of 200 million instructions.

4.6.2 Performance

b shows the per-benchmark performance improvement for the CDE
precomputation thread. The geomean improvement is 4.3%. The branch MPKI
(both direct and indirect branch mispredictions) for these applications is shown in

Figure 4.6la, sorted in decreasing order of branch MPKI. |[Figure 4.6/c shows the

60

35

30
— 25
s 20
=
< 15
Q
£ 10
= 5
0
K N Y I
I CELF AR SR ESEFI G & &&b & €SS
& o‘é\ BN P SO &
& < (a) G < &
25
20
Q.
3 15
(7]
2
‘. I I I
(V]
Qo
2 5
c
5 0 _— --—_____—______
o
-5
o & &
CEEE \ee}'b <4 N9 é\é\% é@Q & é\é\ Qqu’ & *,}bb‘ Qoéa"’&&*éb@“ A (S(_x,b éee‘o&c’%@b%(;oe
& oé‘(\ BN & & < &
¥] (b) & © < &
1.8
1.6
T 14
2 i
S e 1.2 - _
e [AR s RN NE
& -
§3 08 RN | | | I B
§= 06
- €
g 5 0.4
Z 02
0
o) &
CE EEFF AR LR ELR PP IS S F S
K& F RO o T
s Q (c) & P < &®

B Main thread - onpath B Main thread - offpath @ Precomputation thread - onpath @ Precomputation thread - offpath

Figure 4.6: CDE precomputation thread: Branch MPKI, speedup and percentage of
instructions

number of uops fetched from each thread relative to the baseline.

The best-performing benchmarks: te, bfs, cc, mcf, and leela have many mis-
predictions, most of which are on the critical path of the program. Omnetpp and
sssp have a relatively lower branch MPKI but show substantial improvements as they

have many long-latency loads in H2P branch chains. This accelerates both types of

61

100% = — —
90% =
goso%
§ 70% u
8 60%
C
S 50%
5 40%
S 30% i
(%]
S 20% | =
o @ BHE Y S|
0%

I T R & SRS A VRSN SRS S VR E D L & . D
T I T AR & Qe’:’QQ °§'00° S e o ’b(&?' S N Y és‘e & & \&%5
X N o &
beq, o@ QQ} 6_& +,§b \6& AS) A\ (J’bé’
B No Chain M Late [Early: Less than 4 cycles saved

[Early: Between 4 to 8 cycles saved M Early: Between 8 to 16 cycles saved [Early: More than 16 cycles saved

Figure 4.7: Branch misprediction coverage

Benchmarks te bfs ce mef leela be Xz sssp pr

Full penalty saved 0.1% 11.05% | 11.12% 2.23% 4.08% | 16.46% | 16.711% 19.27% 90.45%
Benchmarks deepsjeng | omnetpp gce perlbench | pop2 nab x264 exchange2 | xalanchmk

Full penalty saved 12.8% 44.11% | 2.32% 15.87% | 5.85% | 11.82% | 0.61% 3.74% 0.61%
Benchmarks cam4 Ibm wrf fotonik3d | bwaves | rooms | imagick | cactuBSSSN

Full penalty saved | 3.61% 0.83% | 1.43% 6.16% 3.3% 5.9% 1.61% 0%

Table 4.2: Percentage of branch mispredictions for which the full penalty is saved

chains (reducing the average load latency for some benchmarks) and provides some

of the multiplicative benefits discussed in

The precomputation thread density varies widely between applications, as seen
in [Figure 4.6lc. The precomputation thread reduces the number of main thread
instructions fetched well below the baseline as it significantly cuts out on wrong-path
instructions. In pr, this reduction is so large that even with the precomputation

thread, the total number of instructions fetched is slightly lower than the baseline.

Coverage: shows the misprediction coverage of the CDE pre-
computation thread. Among branch-intensive benchmarks (>1 MPKI), over 75% of
mispredicted branches show some reduction in misprediction penalty, covered under
the “Early” categories. Benchmarks with very high MPKI (>10) mainly show a

4-8 cycle reduction since mispredictions tend to be clustered in these benchmarks.

62

The precomputation thread can only run ahead a short distance before it detects a
misprediction, which synchronizes the state of both threads. In contrast, the distance
between successive mispredictions is larger in sssp, pr, omnetpp, perlbench, and nab.
The precomputation thread has more opportunities to run ahead as it skips more
instructions in these benchmarks. shows the percentage of mispredictions

for which the full penalty is saved.

Late Precomputations: Mcf, sssp, and gcec have a non-trivial percentage of
“late” precomputations. This predominantly occurs when the precomputation thread
and main thread branches finish execution in the same cycle. There are very few cases

(<0.001 PKI) where the main thread branch resolves first.

If only late precomputations are seen in the last 100K instruction window,
precomputation is terminated for 1M instructions. Without these terminations, per-
formance drops from 4.3% to 4.1%. The biggest difference is seen in nab, 126/,
exchange2, and bwaves - they show a performance drop of 1-2% due to backend
contention. I experimented with measurement windows of 10K to 10M instructions.
Windows smaller than 100K do not capture enough late precomputations. Any win-
dow higher than 100K instructions works, but a 100K measurement window followed

by a 1M runtime window ensures any spurious terminations don’t hurt performance.

These terminations are prominent in low-branch MPKI benchmarks and are

responsible for most mispredictions not covered by the precomputation thread - the
“No Chain” category in [Figure 4.7, Only ~ 5% of the mispredictions under this

category are not covered due to incorrect chains and Block Cache misses.

4.6.3 Load Prefetching Effect

Run-Ahead Distance: shows a breakdown of the run-ahead dis-
tance for precomputation thread instructions. For example, in bfs 70% of precom-
putation thread instructions are fetched 1 to 8 cycles ahead of their main thread

counterparts, and the remaining 30% are fetched 8 to 64 cycles ahead. The clustered

63

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage of fetch precomputation thread ops

&
& K\
N S
& X QRS K ™
bz?/ S QQ} Q_’_é\ +,§b & © (,/bé'
W1 to 8 cycles [8 to 64 cycles 064 to 128 cycles 1128 to 256 cycles

W 256 to 512 cycles W 512 to 1024 cycles [1024 cycles and above

Figure 4.8: Run-ahead distance

mispredictions in high-branch MPKI benchmarks are reflected in their low ahead dis-
tance as the precomputation thread state is frequently synchronized with the main

thread after mispredictions in these benchmarks.

The ahead distances suggest that the precomputation thread may be able
to prefetch loads that hit in the Mid-Level or L2 Cache (MLC) and the Last-Level
Cache (LLC) in many applications. If the precomputation thread runs far enough
ahead, it can issue a load many cycles before its main thread counterpart. This
precomputation thread load effectively acts like a prefetch instruction, bringing in
data from higher-level caches into the D-Cache. Thus, when the main thread load
is eventually executed, it hits in the D-Cache. Benchmarks like pr, nab, and roms
can potentially hide the full memory access latency as they can fetch precomputation

thread instructions more than 500 cycles ahead of the main thread on average.

To measure how much of the benefit comes from prefetching loads, [Figure 4.9
shows the number of main thread loads that missed in the D-Cache and went out to

memory, hit in the LLC, or hit in the MLC (with the CDE precomputation thread

64

300

250

200 II

Loads (PKI)
=
w
o

100 I

50 H = 0 ||

. =
=B N
HE o .-
0 0= == - =/ 0o o= L0
() o & (TR S < » > R
MR CRC (;v"Q RS QS °§”» S o '&?’b & & 53(\}- “)“ﬁ
A\ o (\?/ ‘06 Q + S (&) S\ < Q' Sb
&K & & Q}’bo xc;‘o © N &
BAR 1 o Q Gl ¢
M Baseline - Load accessed memory W Baseline - Load hit in LLC @ Baseline - Load hit in MLC
BAR 2
B CDE Precomp - Load accessed memory W CDE Precomp - Load hitin LLC O CDE Precomp - Load hit in MLC

Figure 4.9: Distribution of main thread load accesses that miss in the D-Cache

running alongside it). The lower yellow and orange bars show that loads in hard-to-
predict branch chains that otherwise access the MLC or the LLC are converted into
D-Cache hits by the precomputation thread in several benchmarks, especially if the
ahead distance for these benchmarks is high (bc, sssp). However, there are exceptions
like pr, where precomputation thread loads are either prefetched too early or cause
a lot of backend contention, suggesting that secondary effects limit the benefit of the

load prefetching.

The actual performance impact of these prefetches is minimal - turning off
early resolution in the precomputation thread (in which case any benefit it provides
is due to prefetching) reduces the performance gain to 0 in all benchmarks. The
bulk of the performance benefit associated with prefetching loads comes from hiding

larger latencies (i.e., reducing the blue bar depicting memory accesses), which requires

65

N
wv

N
o

=
wv

=
o

wv

Percentage Speedup

o

'
(%)

CE L F AR LGS IS F ST S S LI ST
b‘?’@Q e QQ'&) e"'&,b#}b(\ Ko@ ° @6&
B Decrement period 1K B Decrement period 10K B Decrement period 25K
O Decrement period 50K O Decrement period 100K

Figure 4.10: Performance for different Critical-Branch Count Table decrement periods

large ahead distances. However, in benchmarks with a high branch MPKI, larger
ahead distances can only be achieved if intermediate mispredictions are also resolved.
Moreover, saving MLC and LLC hit latencies only provides noticeable benefits when

branch mispredictions are also simultaneously improved.

Only using load chains in the precomputation thread, even for long-latency

loads specifically, is thus unlikely to provide much performance. This is evaluated in

Chapter 6, and only provides a 2.2% geomean performance gain.

4.6.4 Varying the Precomputation Thread Density

[Figure 4.10]shows how the speedup changes with the number of hard-to-predict
branch chains in the precomputation thread. Varying the decrement period changes
the MPKI threshold at which branches are marked hard-to-predict. A lower decre-
ment period only marks fewer, higher-MPKI branches, while a higher decrement pe-
riod provides better coverage. Overall, while most benchmarks benefit from a higher
misprediction coverage, there is a sweet spot that balances out coverage vs timeliness,

apparent in leela and bfs.

66

N
wv

N
o

e
wv

<« .Vo

Percentage Speedup

@,}% F

F

p—

F

b

m

b

P

|

f

o & & * Ao & &
LS F LSS L@@ e s(res ¢
NS &S Q @ N . S
Q" & ._fb\'b & & © c,é h S Applications with simple control flows

B Precomputation Thread @ Branch Runahead

Figure 4.11: Comparison against Branch Runahead

4.6.5 Comparison against Branch Runahead

I implemented a scaled-up version of Branch Runahead using a dedicated
execution engine with the same baseline OoO core and measured its performance

improvement. This is shown in |[Figure 4.11}

The CDE precomputation thread overall does better than Branch Runahead
(geomean 3.1%) even though it uses on-core execution resources compared to Branch
Runahead’s dedicated execution engine (which has a large backend optimized to ex-
ecute branch dependence chains). However, Branch Runahead performs comparably
on benchmarks with simple control flows. This includes all the GAP benchmarks and
zz from SPEC. Branch Runahead explicitly identifies independent branches within a
loop using merge point prediction in such applications and executes multiple instances
of their dependence chain in parallel. The precomputation thread saves fewer cycles
per-branch in simple control flow applications but makes up for it through higher
misprediction coverage (~90% vs ~30% on these benchmarks). Branch Runahead
does better than the CDE precomputation thread on bfs, sssp, bc, and cc primarily

because it has a lot more backend execution resources available.

Benchmarks with more complex control flows have fewer independent branches.
Branch Runahead performs poorly here as it is harder to extract misprediction level

parallelism or leverage control independence in these benchmarks.

67

= [N N
o] o (%3]

%

Percentage Speedup

o

C e S 0 E PR R ESEY PPN LEN PSS
o A & QQ‘.’\QS\ &\Q %@z&» QOQ & fz,“o‘%ép@ &9 $°<3£’ &* & & §){,§9
& & QQ} Q,is"\ __'z}’b G$° (;bé
B CDE Precomputation Thread [CDE Precomputation Thread w/ Dedicated Execution Engine

Figure 4.12: Speedup with a dedicated execution engine

4.6.6 On-Core vs Dedicated Execution Engine

Executing the precomputation thread on a separate execution engine elimi-
nates any interference associated with using on-core resources. shows the
performance of the precomputation thread when run on a dedicated execution engine
with the same amount of resources as the core backend (400 Physical Registers, 256
Reservation Stations, and 16 Functional Units). Both threads still share the same
D-cache ports and MSHRs. This configuration pushes the overall performance up to
5.3%. This is not a significant increase, given the execution engine has a much larger
area and power overhead compared to using on-core resources. Most of the improve-
ment comes from bc, deepsjeng, perlbench, and nab - these mainly benefit from the

reduced contention for Functional Units.

4.6.7 More Sensitivity Studies

Impact of mask cache on chain accuracy: shows the PKI of
incorrect chains detected (due to incorrect register or memory dependencies), with
and without the mask cache. Keeping this number below 1-2 PKI ensures the pre-
computation thread isn’t terminated frequently and can run ahead as far as possible.
Without the mask-cache, the high-branch MPKI benchmarks chains are terminated

much more frequently, as only the most recent version of the dependence chains is

68

M Register Dep Incorrect O Register Dep Incorrect - No masks

N
v
]

B Memory Dep Incorrect B Memory Dep Incorrect - No masks

[N
wu o

=
o

'Fu

PKI of incrrect chain dependencies

C L S 0 F PR S R ESD >SS E D Y
NG S & oS & & S S & &

XN " ™

& & & & &F & ° S

Figure 4.13: Incorrect chains detected per 1000 instructions

20
18
o 16
3 14
g 12
& 10
g 8
s 6
¥ 1 M
: m i
a 0 - — — — — —_— — —. — — — —
9 < ™ g] <
(@) \ e}'b so -ﬂ’ :_:L,Q Q Q,(\% \QQ oo(, zoé\ QOQ,L (\%o *’}b (&%’1’ \06&. <(\ (06\ $2\ . &?’b ’g\e Q}& &0@ %6(,)%
o é‘o N & & C & o o
& S & & K 8 &£

Figure 4.14: Relative Speedup with 32 Functional Units in the Baseline

recorded. In terms of performance, this reduces the overall geoeman gain to just 2%,
with most of the high-branch MPKI benchmark suffering the most. A small hand-
ful of benchmarks see a slightly larger run-ahead distance without the mask cache.
However, adding more instructions to the chains to ensure they are correct across all

previously seen control flows always improves overall performance.

Relaxing Functional Unit Constraints: Adding more Functional Units to
the baseline (32 universal execution ports) increases the relative speedup for the CDE
precomputation thread to only 4.6% (note that the baseline for this bar is different).
shows that the current implementation already utilizes functional units

efficiently, and only specific benchmarks like leela, deepsjeng, and nab show benefit.

69

Chapter 5: Preferential Allocation for
Long-Latency Load Chains

Criticality Driven Execution expands the instruction window for long-latency
loads to improve Memory Level Parallelism (MLP). This is achieved by prioritiz-
ing fetch and allocation for long-latency load chains and reducing the proportion of

backend window resources allocated to the remaining “non-critical” instructions.

Code snippet ROB with normal ROB with Critical-
C ly found in benchmark -
re %cf"’“:al;:bmz?cbﬂzr ° execution Load Thread
3 x = array2[idx] 3 x = array2[idx]
1 |for(i=e; i<N) { 4 /* long code 8 i++ }
2 idx = arrayl[i] 5 block here 2 idx = arrayl[i]
3 x = array2[idx] 6 .. 3 X = array2[idx]
4 /* long code 7 Y 8 it}
5 block here 8 i++ } 2 idx = arrayl[i]
6 . 1 |for(i=8; i<N) { 3| x = array2[idx]
7 - 2 idx = arrayl[i] 8 i++ }
8 i++} 3 x = array2[idx] 2 idx = arrayl[i]
(a) 4 /* long code 3 X = array2[idx]
5 block here 8 i++ }
Critical Stream Non-Critical Stream 6 .. 2 idx = array1[i]
; . . . 7 . ¥/ 4 /* long code
2 idx = array1[i] 1 |for(i=0; i<N) {
. 8 i++ } 5 block here
3 X = array2[idx] 4 /* long code
X 1 |for(i=0; i<N) { 6 ..
8 i++ } 5 block here
6 2 idx = array1l[i] 7 ¥/
7 . */ (<) (d)
(b)
Figure 5.1: Preferential allocation example
5.1 Improving Memory Level Parallelism

The example in [Figure 5.1| depicts how this works. The load on line 3 ([Fig-|
.a) is a long-latency load; when executed normally, two iterations of the code

block and thus two instances of the long-latency load can fit in the Reorder Buffer
(ROB) simultaneously (Figure 5.1lc). CDE first breaks this code into two instruction

streams: the critical stream comprising long-latency load chains, and the rest of the

70

instructions in the non-critical stream (Figure 5.1b). Instructions in both streams
are part of the main thread and commit their results. Under preferential alloca-
tion, the critical stream is fetched and allocated first, and non-critical instructions
are initially skipped. Backend window resources - the Re-order Buffer, Reservation
Stations, Physical Registers, and Load and Store Queues - are partitioned to pro-
vide more entries to the critical stream. This allows critical instructions to span a
sequential instruction window larger than the ROB size. [Figure 5.1ld depicts the par-
titioning using a solid line with 80% of ROB entries assigned to the critical stream.
Consequently, four dynamic instances of the long-latency load reside in the ROB

simultaneously, providing higher MLP than the ROB under regular execution.

Non-critical instructions are fetched later into the smaller ROB partition. In-
structions are allocated in program order within their respective partitions. In-order
retirement is maintained by comparing the oldest instructions in each partition, fa-
cilitated by the timestamps assigned to the chain instructions in the critical stream.
When instructions in either section retire, more are fetched to fill the corresponding

ROB partition.

5.1.1 Partitioning Backend Resources

Preferential allocation improves parallelism for long-latency load chains by
lowering non-critical instruction throughput as they are fetched later and get fewer
ROB entries. Non-critical instructions often comprise simple arithmetic operations
or stores that can be executed quickly. They are not impacted much by this reduced
throughput and do not block the retirement of critical instructions, which normally
have a much higher latency. However, there may be some execution phases where non-
critical instructions require more resources. This happens when they contain many
floating-point operations or loads that hit in the LLC. To balance the throughput
of both streams, CDE has a dynamic partitioning algorithm that uses the relative

number of full window stalls in each partition to adjust their sizes.

71

5.1.2 Impact on Branch Misprediction Latency

Hard-to-predict branches are de-prioritized in preferential allocation, which in-
creases their resolution latency in some benchmarks. Adding hard-to-predict branch
chains to the critical stream helps alleviate this effect and claws into some of the
multiplicative benefits of accelerating both chains (improving the speedup for pref-
erential allocation to 6%). This benefit is limited as preferential allocation cannot
fetch and execute branch chains as fast as the CDE precomputation thread. How-
ever, one key advantage of preferential allocation is that it does not increase backend
contention. It can thus provide higher coverage by accelerating chains simultaneously

without slowing down non-critical instructions, a property used in the unified model

in [Chapter 6

Block
Cache

Rename

Fill Buffer
Critical Stream - - - -» Y
Critical
Critcal [__| Critical
Map = LoadJ
Initially contai Queue l ICount Table]
Non-critical '™ Pc decoden uo op
stream
Branch .
L Fetch Decode Rename Allocation RS Execute ROB Retire
Prediction
Critical uops Filtered
out at Rename
|-cache -
Partitioned RSes and Partitioned ROB,
Physical Registers Load Queue and

Store Queue

Figure 5.2: Implementation overview: Preferential allocation for load-latency loads

An overview of the changes needed to support preferential allocation is shown
in [Figure 5.2 The Critical Count Tables and Fill Buffer work as described in
ter 3. The critical stream is constructed by reading out Block Cache entries via the
shadow Fetch stage, similar to the CDE precomputation thread . The
fetched critical stream instructions are sent to an 8-wide shadow Rename stage with

a critical RAT that tracks dependencies for the critical stream. One key additional

72

structure is the Critical Map Queue, which records the Physical Registers assigned

to the critical stream. Its instructions are then sent to the allocation logic.

In parallel, instructions are fetched from the I-cache, forming the non-critical
stream, which initially contains all instructions. After Rename, critical uops are
filtered out, and only non-critical uops are forwarded. This ensures no duplicate uops
enter the backend. Window resources are partitioned into two sections. The partition
sizes are dynamic but skewed towards a larger critical section. Instructions are filled
into their respective ROB partitions in program order, and the oldest instructions in

each partition are compared for in-order retirement. The structure parameters are

summarized in [Table 5.1l

Core Critical Stream FE: dedicated 8-wide Fetch and Rename Stages, 9-cycle latency
Allocation-ports shared with the main thread
75% ROB, RS, PR, LQ, and SQ entries assigned to critical stream initially, dynamically varied

Caches Critical-Load Count Table: 256-entry cache, 0.2KB, 1-cycle access
Block Cache: 512-entry cache, 256 zero-tags, 8-way, 19KB
Other Fill Buffer: 512-entry queue, 8KB, single access port
structures Critical Map Queue: 0.8KB, critical RAT

Table 5.1: Structure sizes for the preferential allocation model

5.2 Frontend
5.2.1 Fetch

The Fetch unit and Block Cache design for preferential allocation is the same
as the CDE precomputation thread, except the Block Cache in this implementation
holds long-latency load chains (and hard-to-predict branch chains depending on the

configuration). Preferential allocation is initiated on a hit in the Block Cache.

5.2.2 Rename

Contents of the main RAT are copied into the critical RAT when preferential

allocation is initiated. Since critical uops consist of dependence chains, they can

73

Renaming Order
(Critical Rat)

I1 is Taken and skips over I2 o

Non-Critical Uops Critical Uops 13
I0: RO <- RO - 1 16
| 10

I1: INZ I3 :
' 13
pd 15

¥ 1 I3: R1 <- [R3+RO] (Regular RAT)

I4: R4 <- [0x200+RO] | ii
I5: R7 <- R4 >>2 | I3
I6: R2 <- [R1] 14
. 5 15
17: [0x300+R7] <- R2 | .
I8: BRNZ I0 : -

18

Figure 5.3: Renaming in preferential allocation: An example

be correctly renamed using just the critical RAT. All Physical Registers assigned to
critical uops are recorded in the Critical Map Queue, a 368-entry FIFO. The main
Rename stage processes the non-critical stream, which initially contains both critical

and non-critical uops.

The critical stream does not use results produced by non-critical uopsﬂ; any
uop in the dependence chains of a critical uop will also be marked critical in the Fill
Buffer when tracing chains. However, non-critical uops can use results produced by
critical uops. Consider the example in |[Figure 5.3] The critical stream is highlighted

in red. 74 and I7 are non-critical but depend on results produced by critical uops.

To ensure these instructions read the correct data, the Renaming logic for
the non-critical stream is modified to read from the Critical Map Queue and the
Free List. Non-critical uops in this stream are renamed normally using the Free
List, but critical uops use the Physical Registers saved in the Critical Map Queue to
update the main RAT. This ensures the state of the main RAT is updated in-order

and non-critical uops that depend on the critical stream read the correct Physical

!The critical thread uses the results produced by older uops before preferential allocation is
initiated - these dependencies are set up via the initial RAT copy.

74

Critical Map Queue Critical RAT

ID Dest Regs V Arch Reg Phys Reg Free List
1 cc - Po, P1,] cc Po
P2, P3,
1 Ro - P4, PS, o Ro P1 P4, PS,
1 R1 _ P6, P7, o R1 P2 P6, P7,
P8, P9, P8, P9,
1 R2 - P10,P11 16 P3 0 R2 P3 P10,P11
1 R3 - I3 P2 1 R3 -
1 R4 - I0 Po, P1 1 R4 -
(a) Initial state of Critical RAT (b) After renaming 10, I3 and I6 for the
and Map Queue first loop iteration
I6 P7] cc P4
I3 P6] RO P5 . . PP
e Two iterations worth of critical
10 P4, P5 4 R1 P6 P8, PO instructions are renamed first.
> P9,
16 P3 0 R2 P8 P1e,P11 - sps
e The remaining non-critical
3 P2 1 R3 - instructions are renamed after this.
I0 Po, P1 1 R4 -
(c) After renaming I0, I3 and I6 for the
second loop iteration
Critical Map Queue Main RAT Critical Map Queue Main RAT
D Dest Regs V Arch Reg Phys Reg D Dest Regs V Arch Reg Phys Reg
I6 P7 1 cc - I6 P7] cc Po
3 Pe ! Re - Free List 3 Pe 0 Re - Free List
Io P4, P5 1 R1 - I0 P4, P5 1 R1 -
P8, P9, P8, P9,
I6 P3 1 R2 - P10,P11 I6 P3 1 R2 - P10,P11
I3 P2 1 R3 - I3 P2 1 R3 -
10 PO, P1 1 R4 - 1 R4 -
(d) Before renaming the first iteration (e) After renaming I@. Use Critical Map
of non-critical uops Queue instead of Free List
I6 P7) ccC Po I6 P7] cc PO
13 P6 2] RO P1 Free List 13 P6 2] RO P1 Free List
Io P4, P5 1 R1 - Io P4, P5 [} R1 P2
P8, P9, P8, P9,
I6 P3 1 R2 - P10,P11 I6 P3 1 R2 - P10,P11
13 P2 1 R3 - 1 R3 -
) R4 P8 1 R4 -
(f) After renaming I1 (no destination). (g) After renaming I3. Use Critical Map
I1 uses physical register PO as input Queue instead of Free List
16 P7 0 cc PO e Using the Critical Map Queue ensures
. e o Ro o the Main RAT is updated in-order (if
Free List a Map Queue entry is not available,
10 P4, P5 1 R1 - PO the non-critical stream stalls)
B
I6 P3 1 R2 - P10,P11 L.
e Note that the Critical RAT cannot
13 P2 1 R3 - provide the correct input physical
0 R4 P8 registers for I1 and I4 as they have

been overwritten!
(h) After renaming I4. Use Free List. I4

takes physical register P1 as input

Figure 5.4: Renaming in preferential allocation: An example (continued)

75

Registers. shows this process for the example in From the

regular Rename stage, only non-critical uops are allocated to the processor backend,

ensuring no duplicate critical uops enter the backend.

The intervening operations on the Critical Map Queue prevent non-critical
uops from being renamed at peak bandwidth. However, this does not degrade overall
performance as non-critical instructions can tolerate the reduced bandwidth. A fail-
safe mechanism using one poison bit per RAT entry prevents incorrect execution, as

discussed in the following section.

5.2.3 Dependence Violations in the Critical Stream

The dependence chains constructed as part of the Backward Dataflow Walk
can be incorrect in rare cases. This primarily happens when a register dependency
spans over 512 uops (the capacity of the Fill Buffer) or the current control has not
been seen in the Fill Buffer (for instance, if branch I; in is not-taken). A
register dependence violation occurs when a critical uop that depends on an incor-
rectly marked non-critical uop is fetched and renamed before the non-critical uop,
leading to incorrect execution. While these violations are rare (< 0.01 PKI), they

need to be detected and resolved to ensure correct execution.

The register poisoning scheme discussed in is used to detect
register dependence violations. Since the non-critical stream Renames both critical
and non-critical uops, the poisoning scheme works as—isﬂ. Memory dependence vio-
lations are detected and resolved by the memory disambiguation logic discussed in
[Section 5.3.4] On a dependence violation, all instructions younger than the offending
critical uop are flushed, and regular execution resumes at the next instruction. Since

these flushes are rare (<0.01 PKI), their impact on performance is minimal.

*Instruction I3 in both examples (Figure 4.5 and [Figure 5.3) causes a violation

76

5.3 Backend
5.3.1 Scheduling

Oldest-first scheduling decides which Reservation Stations uops are sent to the
Execution Units. No additional allocation or scheduling bandwidth is added. Since
critical uops enter the Reservation Stations first, they are naturally prioritized with

oldest-first scheduling.

5.3.2 Dynamically Changing the Partition Sizes

A smaller partition size for the non-critical thread reduces its throughput but
does not generally affect performance. However, assigning too small a partition will
eventually lead to slowdowns. This effect is more pronounced when long-latency loads
in the critical instruction stream hit in the cache hierarchy (not all dynamic instances

of loads marked by the Critical Count Tables cause LLC misses).

A dynamic partition algorithm allows the partition sizes to vary by maintaining
two sets of fill and retire pointers for the ROB, Load Queue (LQ), and Store queue
(SQ). Their increment/decrement logic is modified to use a register that keeps track
of the boundary between the two partition’, The partition sizes are adjusted by
changing the entry that the boundary register points to.

The ROB, LQ, and SQ partitions are independently varied. The partition-
ing mechanism is controlled by counters that measure the number of full window
stalls for both streams. If the counter value for one stream exceeds the other, its
partition size is increased and the counters are reset. ROB partition sizes are incre-
mented /decremented by 32 entries. The LQ/SQ partitions use a granularity of 8.
Reservations Station and Physical Register are allocated on a first-come-first-served

basis, with 32 entries reserved for each stream to prevent deadlocks.

3Given the ROB, LQ, and SQ are treated as circular buffers

7

5.3.3 Branch Mispredictions

Preferential allocation deals with branch mispredictions in the same way as a
regular OoO core. On a misprediction, all instructions younger than the mispredicted
branch are flushed. The Critical Map Queue is partially flushed; this does not impact

the misprediction latency as entries in the Critical Map Queue are filled in-order.

The state of the critical RAT is checkpointed and recovered using the same
mechanism as the main RAT. A misprediction flush does not terminate preferen-
tial allocation if there is a Block Cache entry for the next fetch address after the

misprediction.

5.3.4 Consistency Considerations and Memory Disambiguation

In 000 cores with Total Store Ordering (TSO) or more relaxed forms of mem-
ory ordering, associative lookups are performed on memory addresses and instruction
timestamps in the Load and Store Queues to ensure memory operations are executed
correctly. Since timestamps are available for both critical and non-critical uops, the
memory disambiguation logic is relatively unchanged. The number of timestamp bits
to be compared increases (by 1-2) as instructions under preferential allocation span

a larger instruction window than the ROB.

There may be non-critical stores not allocated to the SQ that are in program
order before critical loads in the LQ. However, LQ entries for critical loads are held
until Retire. Since retirement occurs in-order, the missing non-critical stores will be
allocated SQ) entries before any younger critical loads commit. The L) can then
be checked for memory dependence violations when the store address is calculated,

ensuring correctness.

5.3.5 In-Order Retirement

Instructions in the critical and non-critical sections of the ROB are each filled

in program order. Thus, only the oldest instructions in each section - as indicated

78

by the two retire pointers - need to be checked for retirement. A simple comparison
of their timestamps indicates the next instruction to be retired. While this increases
the complexity of the retirement logic, it does not affect performance noticeably as

very few programs are limited by Retire stage latency.

5.3.6 Terminating Preferential Allocation

Preferential allocation is terminated if the fetch unit encounters a miss in the
Block Cache or a dependence violation is detected. Following this, any remaining
non-critical instructions corresponding to fetch addresses buffered in the main Fetch
Queue are fetched. Omnce the last non-critical instruction is fetched, the processor
resumes regular execution. Since the non-critical stream renames all instructions, the
state of the main RAT is the same as if all instructions were renamed in program order.
No additional work needs to be done to transition back to regular execution. When
the frontend stops fetching critical uops, there may be un-retired critical instructions
in the pipeline. To deal with this, all instructions fetched regularly are treated as non-

critical, and the critical partitions for all backend structures are gradually decreased.

5.4 Hardware Overhead

The area and power overhead for the preferential allocation model and the
CDE pre-computation thread are the same since both models use the same high-level

structures and are sized similarly.

Energy: The energy overhead of all additional structures adds up to 1.4% -
the Block Cache and critical RAT contribute to most of this. The added FIFOs and
pipeline logic do not have significant overhead since the read and write operations
and static energy for these are much lower due to their lower complexity. Overall,
the preferential allocation model provides a significant 5.1% reduction in energy con-
sumption (with select branch chains included) as it reduces execution time without

increasing the number of dynamic instructions that enter the backend.

79

5.5 Evaluation

Methodology: The same simulation infrastructure and benchmarks outlined

in are used to evaluate the preferential allocation model.

5.5.1 Performance

[Figure 5.5b shows the speedup of preferential allocation over the baseline
000 core for two configurations. The first only accelerates long-latency load chains,
providing a geomean improvement of 3.1%. The second has a few additional branch
chains. It uses the Critical-Branch Count Table with a decrement period of 500
(alongside the Critical-Load Count Table) and reaches a geomean improvement of
6%. The benchmarks are sorted in decreasing order of LLC MPKI (shown in
.a), and .c shows the proportion of critical stream instructions in

both configurations.

The preferential allocation model improves performance significantly when the
critical stream is sparse. This allows long-latency loads to be packed together, espe-
cially in lbm, roms, zalanbmk, and cactuBSSN. Comparatively, tc, perlbench, deep-
sjeng and nab have fewer but more spaced apart LLC misses that preferential alloca-
tion can capture. The burstiness of LLC misses (and the corresponding split between
critical and non-critical streams) has a major impact on performance. This, combined
with how well the dynamic partitioning algorithm allocates resources, determines the
overall performance. Average statistics on chain density and MLP do not capture
these effects and thus do not correlate strongly with the observed performance im-

provement.

Memory Traffic: Since the critical instruction stream follows the control
flow generated by the main branch predictor, it traverses the same paths as a regular
000 core. It does not increase memory traffic due to demand requests or prefetches

(only the timing of the prefetches is changed).
Memory Level Parallelism shows the MLP of the two preferen-
80

25

20
Z 15
=
Q10
-
5
0
S R & & Q & & X & Do L E NN L >N e
X TS T LS S S +<‘$Q’ R P S & e o"g'\‘ngz
& &K ° Q§° &R IR
o g @ © (a) N S &
18
16
14
a 12
S 10
(7}
§_ 8
o ©
g 4
§ 2
5 0
a2
¢ O R & & Q8 & & X © 9o ¢ & C NN e > e
& 9 S & (\é\q \&(g, R ¢ { &‘?’ F oé,~<>°’°c QOQ Qé\é\ & Q'béb%c %&% ¢ &
N o X .
S F & & & TS T
B Preferential Allocation - Only Load Chains I Preferential Allocation - Load Chains + Limited Branch Chains
(b)
100
§ 80
A 60
32
= 040
S B
5 220
o ©
g0
S (VRIS) N T T S A I ST s A T T A SN N S PR
% N «0& 79" Qe,‘Q §,‘° g,o& & N +§C’ AR °‘§I\°z°° QOQ é\q’o \?'Q} -\3’% e @z@c ,bo(’g’ $,§Q’
& 9 X)
o S dbe} NG & (©) Q@« &z $ Q;\§»° A
W Only Load Chains [Load Chains + Limited Branch Chains

Figure 5.5: Preferential allocation: LLC MPKI, speedup, and percentage of instruc-
tions

tial allocation configurations relative to the baseline OoO core. The MLP is calculated
as the average number of pending L1 misses per cycle. MLP decreases in perlbench,
mainly due to a reduction in prefetches issued. Adding branch chains often reduces
MLP as it increases the critical stream density, preventing more loads from resid-
ing in the ROB simultaneously. However, adding hard-to-predict branch chains still
provides better performance, as resolving branches late in the non-critical stream is

much more detrimental to performance.

81

1.4

213
2 12
o
S 11
g
=] 1
iy
2 09
a.
—
= 08
S & & R & & . & & & o 9 LD s ST Y
T RSSO +§(.’) S & & g&@"’
(é\('}‘o x <O ~\(°~(\'bso
o & B QO &

B Only Load Chains [Load Chains + Limited Branch Chains

Figure 5.6: Memory-Level Parallelism

The window from which parallelism can be extracted is limited by branch
mispredictions. In benchmarks with high branch MPKI and moderate to high LLC
MPKI - such as sssp, mcf, omnetpp, cc, xz, bfs, and tc - loads beyond a mispredicted
branch do not contribute to useful MLP as they are on the wrong path and generally

access data not needed by the program in the near future.

5.5.2 Dealing with Branch Mispredictions

Loads beyond mispredicted branches only contribute to MLP after the mispre-
diction is resolved. Including their chains in the critical stream reduces the adverse
effects of resolving branches late as part of the non-critical stream. This provides
a substantial performance improvement, as seen in the orange bar in [Figure 5.5b.
shows the branch resolution latency for the two preferential allocation con-
figurations, normalized to the baseline OoO core. Most benchmarks have a higher
branch resolution latency than the baseline core for the first configuration. The second

configuration reduces this effect, especially for high-branch MPKI benchmarks.

Preferential allocation resolves branches faster than the baseline in a few
benchmarks. This is due to two reasons. First, improving MLP launches some long-
latency loads earlier. In benchmarks where long-latency loads are in the dependence

chains of hard-to-predict branches, the computation for these branches is initiated

82

ol
, N P O 0O N

Branch Resolution Cycles
(Normalized to Baseline)

o o
[)

Figure 5.7: Branch resolution latency, normalized to baseline

faster. Second, the critical stream fetches fewer instructions and has a shorter fron-
tend, reducing the effective fetch to execution latency for branches. This only saves
a few cycles of misprediction penalty (~4 cycles), but improves performance in high-

branch MPKI benchmarks such as mcf, leela, zz, cc, bfs and tc.

The branch resolution latency increases in the second configuration for cam4,
fototnik3d, wrf, x26/4, exchange2, and bwaves. These benchmarks have very few mis-
predictions, most of which are not covered by the critical stream as they come from
infrequently mispredicted branches. However, many of their chain instructions are
included in the critical stream, which delays any mispredicted branches in the non-
critical stream. Since there are very few mispredictions in these benchmarks, just a

few such delays end up skewing the average.

Preferential allocation can speed up hard-to-predict branch chains without
executing chain instructions twice. However, it is limited by ROB size and in-order
retirement, and thus cannot provide as much benefit as the CDE precomputation

thread for hard-to-predict branch chains as covered in [Chapter 6]

5.5.3 Varying the Critical Stream Density

shows how performance changes with the number of long-latency
load chains in the critical stream for the two configurations. The configuration in

a uses only load chains, while the one in[Figure 5.8/b contains the additional
83

Percentage Speedup
N

NI S R, VR S R < & &)
& N~ @ ,,;oQ N & ,&QQ é&@ @@ & q (SC’ N §‘ o ef\& QOQ \?/Q%\QQ}Q A© & @63(' <\°‘;&$ &
N o N . &
0& @é ‘@fo & QQ;\ RE & +5\ <
W Decrement period 1K W Decrement period 10K W Decrement period 25K
O Decrement period 50K O Decrement period 100K (a)

18

MmMMmMﬂﬂ M T o 0

-2

Percentage Speedup
N

TP LSS P E LIRSS ELI S
o& ’bé‘o > © ooo & ¢ Q?’Q% S o
& @ < < & &
O Decrement period 1K O Decrement period 10K (b) O Decrement period 25K
W Decrement period 50K B Decrement period 100K

Figure 5.8: Performance for different Critical-Load Count Table decrement periods

branch chains. Most benchmarks benefit from higher coverage. Bc, cactuBSSN,
fotonik3d and z264 show a drop in MLP with more chains as the effect of reduced

sparsity wins in these benchmarks.

5.5.4 Comparison Against Runahead Execution

Many variants of Runahead exist in academia [22, [37, [38] [39], but they share
one key feature: Runahead execution is triggered on a full window stall, and the main
pipeline is used to fetch and execute instructions to find more LLC misses during this

full window stall.

To evaluate Runahead, I selectively initiate the critical instruction stream
(without branch chains) only on full window stalls (after employing heuristics to de-
termine when to enter Runahead mode). No start-up or wind-down costs are included,
and roughly half the backend window resources are available to Runahead instruc-

tions. shows the speedup of Runahead execution compared to preferential

84

o
>
T 8
[
& 6
[
& 4
i)
[
g 2
[
&0
5 (>30% Full Window stall cycles] (15%-5%) (Less than 5%
o Coad P SN SN E N E DA LN N e e D
& 0 (\Q,}'QQ JE IS (33, 4 ~o§§_)c, o <& & anoc &P QOQ S &£ &7\6 & Q,@"@
d < oo & &K E © &
(G N & &
M Preferential Allocation - Only Load Chains @ Runahead (optimized)

Figure 5.9: Comparison against Runahead Execution

18
16
14

Ey
< 12
b
o 10
(%]
o 8
©
t 6
3
T 4
o
2
0
S F R ¢ & RO Q& & & Pad e ¢ & & Hh XG>
O ,\0(o ¢ & Qe‘,& \&“;" /\\(‘9@ @& 0(33’ © ¥ 6 Q°Q & é,\é\ & e &’b\ ,b¢°g' éb“
x> » o
& & +f§b S & & NS °

Figure 5.10: Using 24 MSHRs in the Baseline

allocation with only long-latency load chains. This only improves performance in
a few benchmarks with sufficient stall cycles to sustain Runahead, as on average,
only ~7% of total execution cycles have full window stalls lasting 16 cycles or longer
(Runahead cannot provide benefit for shorter stall durations). Many benchmarks
show no benefit as full window stalls in a large OoO core are both short and infre-
quent. The Runahead does perform better in benchmarks with enough full window
stalls and large runahead distances that cannot be covered by the critical instruction
stream (fotonik, roms). However, a decoupled, speculative execution thread is better

suited to extracting MLP in such benchmarks, as shown in

85

5.5.5 Reducing the MSHR sizes

shows the speedup of preferential allocation over a baseline that
contains just 24 MSHRs. The geomean speedup is 5.9% (with some branch chains
included), marginally lower than the configuration with 32 MSHRs. Even with a
smaller number of MSHRs, preferential allocation uses existing window resources (and
MSHRs) more effectively compared to the baseline. Thus, the relative improvement
does not suffer much. lbm, mcf and cactuBSSN see a drop in the speedup compared
to using 32 MSHRs, as the baseline core more often saturates the MSHR capacity in

these benchmarks (in which case, preferential allocation cannot improve MLP).

86

Chapter 6: Building a Unified Model

Understanding the properties of hard-to-predict branch chains and long-latency
load chains is essential for combining their benefits. Simply accelerating both types
of chains together does not necessarily improve performance, given limited on-core
resources. In the CDE precomputation thread, increasing the number of chains in-
creases backend contention and reduces the effective fetch bandwidth .
Preferential allocation does not increase backend contention; however, adding more

chains reduces the MLP extracted in some benchmarks (Section 5.5]).

This chapter builds a unified execution model that effectively combines the
benefits of hard-to-predict branches and long-latency loads. To better understand
how they should be accelerated, the following sections provide an implementation-
independent measure of the instruction density in both types of chains and how they

overlap.

6.1 Percentage of Instructions in Dependence Chains

An oracle that traces dependence chains for all branch mispredictions and LLC
misses across the entire program does not reflect how actual optimizations based
on these chains would work. Managing chains for individual dynamic branch and
load instances is extremely storage-intensive as the number of possible chains grows
exponentially with each such instance. Instead, we can capture the static branches
and loads needed to achieve a specific branch misprediction and LLC miss coverage
within a window. This provides a stable view of the chains within this window that

can be studied. I ran the following experiment to get this data.

87

6.1.1 Experiment Design

First, information about instructions executed and retired in the SPEC CPU2017
and GAP benchmarks is collected. The collected instructions (in program order) are
then divided into windows of 100k instructions each. Within each window, if the
branch MPKI or LLC MPKI is above 1, static branches and loads that are the high-
est contributors to these mispredictions and misses are marked until 95% coverage is
reached. These represent the hard-to-predict branches and long-latency loads within
this 100k instruction window. Finally, chains are traced for all dynamic instances of

the marked branches and loads within the window.

The threshold for marking branches and loads determines whether the chains
focus on coverage or timeliness. Marking branches hard-to-predict using the parame-
ters in the previous paragraph achieves an accuracy of 11% (89% of branch instances
marked hard-to-predict did not cause a misprediction). In case of loads, 80% are
marked long-latency but do not cause LLC misses. These incorrectly marked branches

and loads increase chain density but are required to achieve high coverage.

Lowering the coverage threshold improves accuracy. Picking a threshold of 75%
coverage and 5 MPKI for mispredictions/misses in the window reduces the percentage
of incorrectly marked branches to 78% and loads to 69%. Chain density for these two

optimization points - one targeting high coverage, and the other targeting lighter

chains is summarized in [Figure 6.1]

6.1.2 Benchmark Categorization

shows the percentage of instructions that are part of hard-to-predict
branch chains, long-latency load chains, and part of both types of chains combined.
(b) uses the high-coverage parameters, while (¢) marks fewer loads and branches for

better accuracy. The benchmarks are sorted in descending order of branch + LLC

MPKI.

Overall, the percentage of chain instructions is lower when the focus is on

88

35

30
25
20
£ 15
>
10
5
0
& @(‘,\ E ¢ R S PR <~*<§ @V.e@" é,c & OQ’\, '@b ${\ "9& o,so ngz & o;}d-
s O @ e & ° N + P &
O r}’b (:bé 6??' QQ’ S z.\.é\ A
M Branch MPKI (a) B LLC MPKI
80
70
é 60
S 50
2
% 40
£
5 30
£ HI |l
u]
- 1l b 1
[
g, O L0 S| B
a
K & (M
CE L e RS ef}bgoc) & \@v*@ \ § ef‘ R ‘%2’6 g0 & o"g’ o &
& S & Q" o TS SN
7’ & & S O
° & (b) ¥ Q <)
@ Both Chains combined MW Hard-to- predlct Branch Chains M Long-latency Load Chains
80
70
2 60
kel
S 50
2
+ 40
f=
& 30
o
9 20
©
€ 10
[
g 0
o &
¢ N *® ¢ N 6?(_9 ¢ \Q/Q}/b \0@" e’,&Q * &é{_%‘;—ﬁ S o ng ‘295\ Qo&é@b Sé\ -Q"o : (\’80 (\Qg} %4@" fz,%a{.
d 3 & & & &° s o
PO (c) &] < ¢r

O Both Chains combined W Hard-to-predict Branch Chains H Long-latency Load Chains
Figure 6.1: Distribution of chain instructions
accuracy ([Figure 6.11(b)). The number of hard-to-predict branch chains in particular
is much lower. Fewer chains are captured for be, sssp and pr, and beyond leela,

very few branch chains are traced. Most instructions in the combined chains come

from hard-to-predict branches, as seen by the slight difference between the yellow

89

‘ Category Chain Instructions ‘ Branch MPKI ‘ LLC MPKI ‘ Benchmarks

I Dense hard-to-predict branch chains, Very High Very High mcf, sssp
long-latency loads within these chains (>5) (~10)
11 Dense hard-to-predict branch chains, Very High Moderate te, bfs, cc, xz
long-latency loads within these chains (>5) (~1to2)
11T Dense but independent hard-to-predict branch High High be, pr, omnetpp,
and long-latency loads chains (>1) (>1) gce, perlbench, pop2
v Only hard-to-predict branch chains Moderate-High Very Low leela, deepsjeng, nab,
(density varies with MPKI) (0.8 to 12.3) (<0.1) exchange2, x264
\% Only long-latency load chains Low Moderate-High | Ibm, roms, xalanbmk, wrf,
(density varies with MPKI) (< 0.4) (0.9 to 20.2) | cactuBSSN, camd, fotonik
Others bwaves, imagick

Table 6.1: Benchmark categories based on chain properties

and blue bars. Thus, adjusting the threshold at which they are marked hard-to-
predict is important for regulating the percentage of chain instructions (more so than

long-latency loads).

categorizes these benchmarks based on how the hard-to-predict
branch and long-latency load chains overlap. Most benchmarks show the same be-
havior under both configurations. Categories I and II contain benchmarks in which
most long-latency loads are within hard-to-predict branch chains. These benchmarks
are both branch and memory-intensive. The only difference is the proportion of LLC
misses - the category I benchmarks, mcf and sssp, often saturate the D-cache MSHRs
even under regular execution. Benchmarks in category III have relatively indepen-
dent chains for hard-to-predict branches and long-latency loadsﬂ Categories IV and V
contain only hard-to-predict branch chains or long-latency load chains. Finally, the
“Others” category represents benchmarks with a very low branch and LLC MPKI
that don’t fit with the rest.

Looking back at the oracle studies in [Figure 1.1} category I, II, and III bench-
marks benefit most from improving loads and branches together. Out of these, only
accelerating hard-to-predict branch chains captures both benefits in category I and

II benchmarks.

LA lower coverage decouples the chains in sssp, but the loss in coverage hurts performance sig-
nificantly

90

20

35.8% B Precomputation - only branch chains

O Preferential allocation - only branch chains
15
B Precomputation - only load chains

O Preferential allocation - only load chains

ﬂ gl L‘J%im

[tegory J[Category Il][Category Il][Category IV][Category V]
|

=
o

v

Percentage Speedup

o

-5

& < & 9 A 9 £ < S 2 L O v > o N N > > 3 QS
& RS N «§ LS R & o X & & v & & N\ A >
&g © < Qe‘& @ ®z° Q°Q & ® &c% S IR <‘,°<° §§°‘1 & & s g @’1’% &
o .
& sz ¥ & +’§b & «© 4

Figure 6.2: Accelerating only hard-to-predict branch chains or long-latency load
chains

6.1.3 Improving Loads and Branches Individually

Figure 6.2| shows the best performing configurations for the CDE precom-
putation thread and preferential allocation using hard-to-predict branch chains and

long-latency load chains individually.

Category I and II benchmarks do well with both execution modes when only
hard-to-predict branch chains are accelerated. These chains contain many long-
latency loads and thus provide the benefit of accelerating both hard-to-predict branches
and long-latency loads simultaneously. Preferential allocation does better in tc due
to less backend contention, while precomputation does better on others due to its
larger run-ahead distance. These benchmarks are unlikely to show much improve-
ment with a unified model since their hard-to-predict branch chains and long-latency
load chains cannot be decoupled. Moreover, while moving a hard-to-predict branch
chain to preferential allocation decreases contention, it reduces the chain’s benefit.
Category II benchmarks may show slightly higher improvement since their memory
intensity is lower, allowing preferential allocation to better improve MLP without the

intervening branch chains.

Using hard-to-predict branch chains or load-latency load chains individually

91

does not extract the full performance benefit in category III benchmarks. Accelerating

both types of chains together is likely to show the highest benefit in these benchmarks.

Some category IV benchmarks suffer backend contention under precomputa-
tion and work better with preferential allocation. The unified model can improve on
these benchmarks if the precomputation thread accelerates only a limited number of
branch chains to maximize timeliness (while preferential allocation provides coverage

for the rest).

Preferential allocation performs better on category V benchmarks as it can
extract MLP without adding cache port pressure. However, benchmarks like roms
and fotonik3d have a large run-ahead distance, which allows the precomputation

thread to prefetch some LLC misses in these benchmarks.

6.2 Unified Execution Model
6.2.1 Why the Simple Approach does not Work

There are three main reasons why a smarter design is needed for building a
unified model as opposed to the naive approach of simply combining the two types

of chains within either execution model:

Backend contention: Contention for Functional Units, D-cache ports, and
allocation bandwidth hurts performance when duplicate instructions enter the back-
end. touches upon this - even precomputing only hard-to-predict branch
chains requires early termination to avoid performance inversion in a few benchmarks.
Accelerating both types of chains together only exacerbates this problem and requires
actively removing some chains from the precomputation thread. However, backend
contention varies widely among benchmarks and is hard to estimate without running
the precomputation thread. Thus, a dynamic feedback mechanism is needed to find

the sweet spot for performance.

Limited benefits with preferential allocation: While preferential allo-

92

cation eliminates all backend contention issues, it cannot run-ahead as far as the
precomputation thread due to limitations imposed by the ROB size and in-order
retirement. shows that most benchmarks with hard-to-predict branches
perform significantly worse with preferential allocation than with precomputation.
Thus, an independent, speculative precomputation thread is needed to accelerate

some chains.

Fetch bandwidth limitations: Combining both chains reduces the effective
run-ahead distance of the precomputation thread, especially in benchmarks with rel-
atively independent hard-to-predict branch and long-latency load chains. This affects
hard-to-predict branch chains predominantly as they are more sensitive to latency,

and requires prioritizing their fetch and allocation over long-latency load chains.

6.2.2 Accelerating Loads and Branches together

The unified execution model for CDE addresses these limitations by both using
an independent speculative precomputation thread and splitting the main thread into
critical and non-critical streams. A few simple modifications to the existing mech-
anism for tracing chains allow CDE to dynamically manage where hard-to-predict

branch chains and long-latency load chains go.

The Critical-Branch and Critical-Load Count Tables have two sets of counters
instead of one (Section 6.4.1)). The first set of counters marks branches and loads
for the precomputation thread and has a low decrement period to maintain good
timeliness and reduce backend contention. However, the load counter for the pre-
computation thread is incremented only when the load is an LLC miss and
the current run-ahead distance is greater than its latency, ensuring it only
captures loads that preferential allocation cannot improve. The second set of coun-
ters is used for the critical stream and has a high decrement period to provide good

coverage.

Chains are traced for the precomputation thread first, and any branch or load

93

already marked as part of the precomputation thread chains is excluded from the
critical stream. (Section 6.4.3]). The decrement period for the precomputation thread
branch counter is occasionally halved (every 100K instructions) to check whether
reducing the number of precomputation thread instructions improves performance.

Beyond a certain threshold, the precomputation thread is turned off (Section 6.5)).

Finally, allocation prioritizes precomputation thread instructions over criti-
cal stream instructions, and non-critical instructions are allocated last. This, coupled
with a simple first-come-first-served policy for Reservation Stations and Physical Reg-

isters, effectively manages backend resources.

These modifications allow the precomputation thread to accelerate as many
chains as possible without increasing backend contention while the critical stream

takes care of all the remaining hard-to-predict branches and long-latency loads.

6.3 Implementation Overview

shows an overview of the full CDE implementation that combines
precomputation with preferential allocation. Instead of using three distinct frontends,
this implementation removes most of the pipeline stages for the preferential allocation
model. The critical stream still has a dedicated Fetch stage and associated Block
Cache, but shares the rest of the pipeline stages with the non-critical stream. The
precomputation thread frontend remains unchanged. Additional structures from both
implementations - the Critical Map Queue, Store Data Cache, and PR Map Table -
are included. Finally, the dependence chain tracing hardware (Fill Buffer and Critical
Count Tables) is modified to trace two sets of chains: one for the precomputation

thread and the other for the critical stream.

94

Precomp Pre PR
Block Cache . RAT Critical Count]
CDE Precomputation _ _ _ >

Thread Tables
Precom rea PRM
Fet hp Rename
etcl Non-critical instruction ore Da@ Fill Buffer
buffers
Branch Reservation 0
L Fetch Decode Rename . Execute Retire
Prediction Stations
Critical instruction Crit T Partitioned RSes and Partitioned ROB,
M - ;
Crit buffers uzze Physical Registers LQ and SQ
Fetch Main Thread
Critical stream + - - - -»
Crit non-critical stream

Block Cache
| —

Figure 6.3: Implementation overview: Unified execution model for CDE

6.4 Tracing Chains for the Precomputation Thread and the
Critical Stream

6.4.1 Critical Count Tables

The Critical Count Tables need to track two sets of hard-to-predict branches
and long-latency loads as discussed in [Section 6.2 Rather than build four separate
tables, CDE uses two tables with two sets of counters . The Critical-
Branch Count Table holds two counters with different decrement periods. The first
counter captures hard-to-predict branches for the precomputation thread - it has a
lower decrement period and is thus more selective about which branches are marked.
The second counter captures hard-to-predict branches for the critical stream and has
a high decrement period to ensure good coverage. The Critical Load Count Table
is similarly modified to contain two counters. The precomputation thread counter is
only incremented if an LLC miss is seen and its latency is greater than the current
run-ahead distance of the precomputation thread. This allows the precomputation
thread to selectively accelerate loads that can be prefetched. An entry in either table

is replaced only if both its counter values are 0.

95

‘; Construct chains for

l recomputation thread
TAG @mter@ (§ounter(h®—— P putat

Mispredicted
—>»{| UPDATE
branches

Critical Branch Count Table

Construct chains for
critical stream

TAG @nter (low) Qounter (highD

LLC miss
loads
&
Latency >
Run-ahead

distance

Critical Load Count Table

Figure 6.4: Critical Count Tables with two counters

6.4.2 Fill Buffer

The Fill Buffer is modified to contain two sets of bits indicating whether the
uop is a hard-to-predict branch, a long-latency load, and whether it is part of the
chains, for the precomputation thread and the critical stream separately. The rest of

the bits remain the same.

6.4.3 Backward Dataflow Walk

The Backward Dataflow Walk is performed twice when the Fill Buffer is full.
In the first instance, chain uops for the precomputation thread are traced using the
corresponding bits for hard-to-predict branches and long-latency loads in the Fill
Buffer. This marks the chain bit for precomputation thread uops. The second in-
stance of the Walk traces chain uops for the critical stream. However, hard-to-predict
branches or long-latency loads already in the precomputation thread are not used as
initiation points. This ensures the precomputation thread and critical stream don’t

accelerate the same chains. demonstrates this process with an example.

96

Basic
Block

Basic
Block

Basic
Block

Code Snippet

mov r4,[r5+r6]
shfr r3, #1
and r6, #1
jne B

i
add r4, #64
cmp r3, #0
jnz C

i
r5,[r6]

mov

mov
cmp
jne

ro,[r4]

ro, #o

skip
(a)

- The red branch is marked
for precomputation thread
chains

- The red and blue loads
and branches are marked for
critical stream chains

Backward Dataflow Walk for the
precomputation thread

Fill Buffer

mov r4,[r5+r6]

As | shfr r3, #1
Ag | add r6,#1
A7 | jne B

Bg | add r4, #64
By | cmp r3, #0
B2 [jnz C
r5,[ré]

Cop | mov

—A

<

ro,[ra]
ro, #o
skip

l C21 | mo
€22 cmp

C23

S

jne

(b)

- Only Cp3 is used as an
initiation point for the Walk

- Marked precomputation thread
chain instructions have a red
border around them

Backward Dataflow Walk for the
critical stream

Fill Buffer

Ag | mov r4,[r5+r6]

Ag | shfr r3, #1 i>
Ag | add r6,#1

A7 | jne B

Bp | add r4, #64
B1 | cmp r3, #0
B2 | jnz ¢
r5,[r6]

Co | mov

J-C21
C22

€23

—A

ro,[r4]
ro, #o
skip

cmp

jne

(c)
- Ordinarily, this would trace
the dependence chains
for B;,Cp,C21,C23 to provide
high coverage

- However, the precomputation
thread chain bit is set

for C21,C23 by the previous
Walk. These are not used as
initiation points

Speculative
Thread
Block Cache

TAG Uops

PC(Ag))
PC(Bg) Bo
PC(Cg)

€21 C22 C23

(e)

Critical
Stream
Block Cache

TAG Uops
PC(Ag) As Ag
PC(Bg) B1 B2

PC(Co) Co

()

- Basic block segments are
stored separately for the
precomputation thread
chains and the critical
stream chains.

Figure 6.5: Tracing chains in the combined model

6.5 Dynamically Adjusting how Chains are Accelerated

various configurations and are listed in [Figure 6.6la. The critical stream decrement

The initial parameters for the Critical Count Tables were obtained by sweeping

periods are initialized to 100K.

decrement period for the precomputation thread counter in the Critical-Branch Count

To account for the variability in backend contention among benchmarks, the

Table is dynamically adjusted (Figure 6.6/b). This mechanism measures the IPC in an

epoch (100K retired instructions in my implementation) with the current decrement

period and half the decrement period for the branch counter. The decrement period

is updated if the difference in IPC between the two configurations is greater than

0.2. If the current period performs significantly better (IPC difference > 0.4), the

decrement period is opportunistically increased. If halving the period performs better,

97

100K insts 100K insts

RUN WITH RUN WITH
Branch Counter for CURRENT HALF BRANCH
Precomputation thread BRANCH CTR CTR DEC
DEC PERIOD PERIOD :
initial_dec_period = 1000 ipc_normal -
ipc_half > 0.4?
min_dec_period = 100 . . -
ipc_normal ipc_half double_br_period
max_dec_period = 100,000
Load Counter for
Precomputation thread 400K insts ipc_half -
dec_period = 10000 ipc_normal > @.2?
RUN WITH half_br_period
(UPDATED)
BRANCH CTR
DEC PERIOD
(a) (b)

Figure 6.6: Dynamically adjusting the decrement period for precomputation thread
branches and loads

the decrement period is decreased. If the decrement period goes below a certain
threshold, no chains are traced for precomputation thread branches. Only the branch
decrement period is varied since the precomputation thread selectively picks which

long-latency load chains to accelerate by looking at the current run-ahead distance.

6.6 Frontend Changes for the Unified Model
6.6.1 Fetch

The Fetch stage for the critical stream is not combined with the main pipeline
to avoid re-fetching instructions multiple times. The critical stream Block Cache can
be optimized to store just masks instead of uops, reducing its storage at the cost
of increased latency for the critical stream (as critical instructions would need to be
fetched from the I-Cache and then decoded). This drops performance by ~ 0.7% but
reduces the storage cost of the critical Block Cache from 19KB to 3KB.

98

6.6.2 Rename

Rename uses three individual RATs to manage dependencies for the three
instruction streams. The main RAT contains two poison bits to track incorrect chains
simultaneously for the precomputation thread and the critical stream. The bit-masks
for both sets of chains provide this information (as was the case for the individual

implementations).

6.6.3 Allocation

Allocation for the precomputation thread uses 4 dedicated write ports into the
Reservation Stations. The 8 baseline allocation ports are shared by the precomputa-
tion thread and the main thread, with priority given to the precomputation thread.
Arbitration between the critical and non-critical streams is done at the instruction

buffers in this implementation, with priority given to critical stream uops.

6.7 Backend Changes for the Unified Model

Physical Registers and Reservation Stations are allocated on a first-come-first-
served basis. 32 entries are reserved for the precomputation thread, critical stream,
and non-critical stream (when active) to ensure each of them makes sufficient forward
progress. In addition, a limit of 300 Physical Registers is set for the precomputation

thread.

The ROB, LQ, and SQ are partitioned between the critical and non-critical

streams as before, and the dynamic partitioning algorithm remains unchanged.

6.8 Hardware Overhead

Area and Power: The hardware overhead for this implementation increases
slightly compared to the two individual models since it has two Block Caches and

two additional RATs. This puts the area overhead at 4.9% and the additional peak

99

Percentage Speedup

Category Il Category V

0
[Catelgory][Category Il][
-5

[Cegor ")

o N & >
R L & HE SR ES & &L \é\% & Qog,"’ & & & O@‘“éﬁ & _@5 & & &
& N er &Q, < \fb‘\(’ S SN & \((@
o QQ’ ¥ oF & @ S
W Unified Model @ Precomputation (on-core) - both chains @ Preferential Allocation - both chains

Figure 6.7: Speedup of the unified execution model

power at 10% over the baseline OoO core.

Energy: The unified model sits mid-way between preferential allocation and
precomputation. However, since most of the chains are handled by the critical stream

and the overall runtime is reduced significantly, it reduces energy consumption by

4.3%.

6.9 Evaluation

6.9.1 Performance

shows the percentage speedup of the unified model over the baseline.
It also shows the best-performing preferential allocation and on-core precomputation
configurations, targeting both types of chains. The period-adjusting mechanism and
Critical Count Table parameters were tuned separately for the on-core precomputa-
tion thread for best geomean performance. The Critical Count Tables were tuned for

preferential allocation to maximize coverage.

In the category I and II benchmarks, the models perform closely, with prefer-
ential allocation losing out in some cases due to its limited run-ahead distance. Since

most hard-to-predict chains contain long-latency loads in these benchmarks, they do

100

not see much improvement over just using hard-to-predict branch chains ([Figure 6.2]).

Category 111 is where combining the chains shows the most benefit. bc, pr, and
omnetpp all perform significantly better with both chains on all execution models.
The unified model does much better on gce, perlbench, and pop2 as it can effectively

split off some chains to the critical stream in these benchmarks.

Precomputation does poorly on category IV and some category V benchmarks
due to contention on the Floating Point, Vector, Branch Functional Units, and D-
cache ports. Conversely, preferential allocation performs well on these benchmarks,

and the unified model improves on it by accelerating a few chains via precomputation.

pr, bc and roms benefit significantly from the load prefetching effect of the

precomputation thread due to their large run-ahead distance.

Overall comments: The unified model provides better performance (9% ge-
omean) and has no negative outliers. The combined precomputation thread with
optimizations provides a 7% geomean speedup. Without the late precomputation
terminations and dynamic period changes, the performance of this configuration de-
creases by 2%. Preferential allocation only improves performance by 6.1%, but has
the lowest overhead. On average, no additional instructions enter the backend in pref-
erential allocation. For precomputation, this number is 20%. In the unified model,

on average 12% more instructions enter the processor backend.

The precomputation thread narrowly outperforms the unified model in several
benchmarks. This is due to the variable decrement period. The mechanism sometimes
greedily removes branches from the precomputation thread (especially in category I
and IT benchmarks), and performs worse in the long term. Preferential allocation
also performs better than the unified model in some cases where minimizing backend

contention is more important.

101

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage of branch mispredictions

Q 2 & X S
¥ (a) & & & ©
B Branch mispredictions - Only in Precomputation Thread @ Only in Critical Stream @ Accelerated by both @ Not accelerated (in main thread)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage of LLC misses

M LLC misses - Only in Precomputation Thread B Only in Critical Stream @ Accelerated by both [Not accelerated (in main thread)

Figure 6.8: Branch misprediction and LLC miss coverage

6.9.2 Misprediction Coverage

In the unified model, the precomputation thread covers most branch mispre-
dictions and LLC misses in category I and II benchmarks as seen in [Figure 6.8|
The critical stream covers the bulk of the misses and mispredictions in the rest of the
benchmarks, as the critical stream performs comparably (or better) on these branches
and loads. A small portion of branch mispredictions and LLC misses are covered by
both the precomputation thread and the critical stream. The masks in the Block
Cache are responsible for this. When a chain is removed from the precomputation
thread, it remains in the Block Cache masks until the masks are eventually reset

(every 500k instructions).

102

w w s A
St o

25

OIIIIII'II.ILI'iLﬁl I‘—.-_—_-l

-5

N
o

=
v o

Percentage Speedup
=
(9]

& 9

SHEEEPE L EIELEEI PSS D S
& N < Q/Qc’ L < 'béd \.& & ‘O\‘A \(éb
© <& ® & & & 8
B Unified Model @ Precomputation with both chains, on a dedicated execution engine

Figure 6.9: Comparison against a Slipstream-Like approach

6.9.3 Comparison against a Slipstream-Like Approach

Using a separate core increases communication latency and drastically reduces
the branch misprediction penalty saved. Instead, I used a separate OoO execution
engine containing the same number of Reservation Stations, Physical Registers, and
Functional Units as the main core (with shared D-cache ports and MSHRs) to model
a Slipstream-Like approach. This engine only runs the precomputation thread with
both hard-to-predict and long-latency load chains, eliminating any performance loss
due to backend contention (except for D-cache ports). The Critical Count Table
and watchdog parameters were optimized for this configurationFigure 6.9 shows its

speedup. The geomean performance improvement is 9.5% over the baseline OoO core.

The dedicated execution performs marginally better on most benchmarks. The
unified model does better on a few benchmarks by dividing chains between the pre-
computation thread and critical stream to provide better fetch bandwidth for the
precomputation thread. For instance, bfs, sssp, and pop2 perform worse with a
combined precomputation thread. The dedicated engine consumes 1.5x more
power, 1.35x more area, and 1.29x more energy compared to the baseline

000 core, making it significantly less efficient.

103

6.9.4 Parameter Tuning

The unified model relies on the guidelines laid out in to separate
out the load and branch chains for best performance, and to pick the best perform-
ing configuration between preferential allocation and precomputation when the chains
cannot be separated. The key parameters for tuning this are the decrement period for
the Critical Count Tables, the threshold at which loads are assigned to the precom-
putation thread, and the measurement period of the contention-monitoring feedback

mechanism.

The Critical Count Table parameters follow the same trends as the individual
execution models and are the most important to tune, with a variance of 2%-3% in
speedup across all benchmarks. The threshold at which loads are assigned to the
precomputation thread mainly impacts category IV benchmarks (with roms seeing
a loss of 4%-5% speedup if too few loads are added to the precomputation thread).
The contention-monitoring feedback mechanism parameters have a much lower overall
impact, less 1% difference in the geomean speedup. However, tuning them removes

negative outliers (pop2, bwaves, camy, 1264).

104

Chapter 7: Conclusion and Future Work

7.1 Conclusion

Single-thread performance has come a long way in the past 30 years. Branches
and loads, which were deemed significant bottlenecks when OoO execution was first
introduced, have improved with better branch prediction and data prefetching algo-
rithms. However, as modern designs continue to push for wider and deeper cores, the
impact of branch mispredictions and cache misses on performance continues to grow.
Even with commercially implemented algorithms, eliminating these mispredictions
and misses can provide over a 2x IPC improvement. The fundamental challenge lies
in coverage— existing approaches only address a small fraction of branch mispredic-
tions and cache misses, particularly those caused by hard-to-predict branches and

long-latency loads.

While eliminating the full penalty of branch mispredictions and cache misses
is challenging, issuing early misprediction flushes and launching multiple long-latency
loads in parallel can significantly reduce their performance impact. This approach
enables the mitigation of a broader class of mispredictions and cache misses that prior

techniques fail to address, which is the main focus of this dissertation.

At the heart of Criticality Driven Execution (CDE) is its thread construction
mechanism, which dynamically traces highly accurate, long, and lightweight depen-
dence chains for both branches and loads. These chains are annotated with times-
tamps that establish their ordering relative to the rest of the instruction stream to
simplify communication. CDE leverages these chains in two ways: building a specula-
tive precomputation thread that accelerates the resolution of hard-to-predict branch
chains, and using a preferential allocation scheme that improves Memory Level Paral-
lelism for long-latency loads. These mechanisms operate in tandem to utilize existing

on-chip resources more effectively without adding extra execution hardware, achiev-

105

ing an overall 9.0% IPC improvement over an aggressive OoO core for the SPEC

CPU2017 and GAP benchmark suites.

This work demonstrates that redistributing existing OoO core resources to pri-
oritize critical instructions is an effective and efficient strategy for improving perfor-
mance. By dynamically adapting fetch and allocation priorities based on instruction
criticality, CDE can scale frontend bandwidth and instruction window size for in-
structions important to performance without the exponential cost of building a wider

pipeline or a deeper backend.

7.2 Future Work

The execution models proposed in this dissertation require several dynamic
feedback mechanisms. They interact with each other in complex ways and need
to be driven by targeted feedback from the OoO core beyond just stall cycles and
IPC. A holistic mechanism that combines all these aspects and partitions allocation
bandwidth and backend resources is key to extracting all the performance benefits
that CDE could not uncover. This can drive a more targeted design for an OoO core,
where the parameters are decided by how to best accelerate critical chains rather than

targeting blanket fetch bandwidth and parallelism improvements for all instructions.

Besides direct improvements, the findings of this dissertation allow for more

exploration in other aspects of microarchitecture.

Using the Chain construction mechanism: CDE’s chains are highly ac-
curate and long while containing as few instructions as possible to maintain this high
accuracy [I3], 14]. This opens up opportunities for isolating important program seg-
ments that can be used to improve other aspects of OoO core performance, such as

Instruction Level Parallelism (ILP).

Adopting Preferential Allocation: Preferential allocation [I4] provides a

means for fetching, renaming, and allocating instructions out-of-order. Not all these

106

operations need to be performed out-of-order to prioritize instructions. For instance,
a simpler implementation may only rename and allocate instructions to Reservation
Stations and Physical Registers out-of-order while buffering the remaining instruc-
tions in the ROB or cheaper in-order queues. This enables better scheduling without
modifying the scheduling logic in the Reservation Stations, which is often latency-

sensitive.

Using control flow to accelerate loads: The execution models in this
dissertation show that accounting for hard-to-predict branch chains is necessary for
accelerating loads in many workloads [13]. This suggests that incorporating accurate
control flow information from the main branch predictor is essential for accurately
identifying future loads for tasks such as prefetching. A simple branch predictor
or static prediction is insufficient for applications with complex control flows, which

high-performance OoO cores are often geared towards.

107

1]

2]

References

“Scarab,” |https://github.com /hpsresearchgroup /scarab.

“The standard performance evaluation corporation (spec),” 1997. [Online].

Available: https://www.spec.org/

M. Agarwal, N. Navale, K. Malik, and M. I. Frank, “Fetch-Criticality Reduction

)

through Control Independence,” in 2008 International Symposium on Computer

Architecture, 2008.

H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint processing and re-
covery: Towards scalable large instruction window processors,” in Proceedings
of the 86th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 36. USA: IEEE Computer Society, 2003, p. 423.

R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynamically allocating
processor resources between nearby and distant ilp,” in 28th Annual Interna-

tional Symposium on Computer Architecture (ISCA), 2001.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,” 2017.
[Online]. Available: https://arxiv.org/abs/1508.03619

B. Black, B. Rychlik, and J. Shen, “The block-based trace cache,” in Pro-
ceedings of the 26th International Symposium on Computer Architecture (Cat.
No.99CB36367), 1999, pp. 196-207.

T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The load
slice core microarchitecture,” in 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015, pp. 272-284.

108

https://github.com/hpsresearchgroup/scarab
https://www.spec.org/
https://arxiv.org/abs/1508.03619

[9]

[11]

[12]

[13]

[15]

R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt, “Simultaneous subordi-
nate microthreading (ssmt),” in Proceedings of the 26th International Symposium

on Computer Architecture (Cat. No.99CB36367), 1999, pp. 186-195.

R. Chappell, F. Tseng, A. Yoaz, and Y. Patt, “Difficult-path branch predic-
tion using subordinate microthreads,” in Proceedings 29th Annual International

Symposium on Computer Architecture, 2002, pp. 307-317.

A. Chauhan, J. Gaur, Z. Sperber, F. Sala, L. Rappoport, A. Yoaz, and
S. Subramoney, “Auto-predication of critical branches,” in Proceedings of the
ACM/IEEE J7th Annual International Symposium on Computer Architecture,
ser. ISCA ’20. IEEE Press, 2020, p. 92-104. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00019

A. Deshmukh, L. C. Cai, and Y. N. Patt, “Alternate path fetch,” in 202/
ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA), 2024, pp. 1217-1229.

A. Deshmukh, L. Cai, and Y. N. Patt, “Timely, efficient, and accurate branch
precomputation,” in 2024 57th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2024, pp. 480-492.

A. Deshmukh and Y. N. Patt, “Criticality driven fetch,” in MICRO-5/:
54th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO "21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 380-391. [Online]. Available: https://doi.org/10.1145/3466752.3480115

J. Doweck, “Inside intel core microarchitecture and smart memory access,”
2006. [Online|. Available: https://www.intel.com/pressroom/kits/core2duo/
pdf/ICM_whitepaper.pdf

109

https://doi.org/10.1109/ISCA45697.2020.00019
https://doi.org/10.1145/3466752.3480115
https://www.intel.com/pressroom/kits/core2duo/pdf/ICM_whitepaper.pdf
https://www.intel.com/pressroom/kits/core2duo/pdf/ICM_whitepaper.pdf

[16]

[18]

[19]

[20]

[21]

Q. Duong, A. Jain, and C. Lin, “A new formulation of neural data prefetch-
ing,” in 2024/ ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), 2024, pp. 1173-1187.

A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow analysis of branch
mispredictions and its application to early resolution of branch outcomes,” in
Proceedings. 31st Annual ACM/IEEE International Symposium on Microarchi-
tecture, 1998, pp. 59-68.

D. Friendly, S. J. Patel, and Y. Patt, “Alternative fetch and issue policies for
the trace cache fetch mechanism,” in Proceedings of 30th Annual International

Symposium on Microarchitecture, 1997, pp. 24-33.

A. Garg and M. C. Huang, “A performance-correctness explicitly-decoupled ar-
chitecture,” in 41st International Symposium on Microarchitecture (MICRO),
2008.

B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra,
P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya, “Evolution of
the samsung exynos cpu microarchitecture,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 40-51.

S. Gupta, N. Soundararajan, R. Natarajan, and S. Subramoney, “Opportunistic
early pipeline re-steering for data-dependent branches,” in Proceedings of
the ACM International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT °20, 2020, p. 305-316. [Online]. Available:
https://doi.org/10.1145/3410463.3414628

M. Hashemi and Y. N. Patt, “Filtered runahead execution with a runahead

buffer,” in 48th International Symposium on Microarchitecture (MICRO), 2015.

110

https://doi.org/10.1145/3410463.3414628

[23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous Runahead: Transparent
Hardware Acceleration for Memory Intensive Workloads,” in 49th International

Symposium on Microarchitecture (MICRO), 2016.

Huiyang Zhou, “Dual-core execution: building a highly scalable single-thread
instruction window,” in 14th International Conference on Parallel Architectures

and Compilation Techniques (PACT’05), 2005.

S. Tacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham,
“Effective stream-based and execution-based data prefetching,” in Proceedings
of the 18th Annual International Conference on Supercomputing, ser. 1CS ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p. 1-11.
[Online]. Available: https://doi.org/10.1145/1006209.1006211

D. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch Predic-
tion (CBP-5), 2016.

Jiwei Lu, A. Das, Wei-Chung Hsu, Khoa Nguyen, and S. G. Abraham, “Dynamic
helper threaded prefetching on the Sun UltraSPARC/spl reg/ CMP processor,”
in 38th International Symposium on Microarchitecture (MICRO’05), 2005.

T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez, and
B. Kasikei, “Whisper: Profile-guided branch misprediction elimination for data
center applications,” in 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2022, pp. 19-34.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1, 2016.

S. Kondguli and M. Huang, “Bootstrapping: Using SMT Hardware to Improve
Single-Thread Performance,” in ASPLOS ’19, 2019.

111

https://doi.org/10.1145/1006209.1006211

[31]

[33]

[34]

——, “R3-dla (reduce, reuse, recycle): A more efficient approach to decoupled
look-ahead architectures,” in 2019 IEEFE International Symposium on High Per-
formance Computer Architecture (HPCA), 2019, pp. 533-544.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. ~ MICRO 42, 2009, p. 469-480. [Online]. Available: https:
//doi.org/10.1145/1669112.1669172

H. Litz, G. Ayers, and P. Ranganathan, “Crisp: critical slice prefetching,” in
Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 300-313.
[Online]. Available: https://doi.org/10.1145/3503222.3507745

C. Madriles, P. Lopez, J. M. Codina, E. Gibert, F. Latorre, A. Martinez, R. Mar-
tinez, and A. Gonzalez, “Boosting Single-Thread Performance in Multi-Core
Systems through Fine-Grain Multi-Threading,” in 36th Annual International
Symposium on Computer Architecture (ISCA), 2009.

K. Malik, M. Agarwal, S. S. Stone, K. M. Woley, and M. I. Frank, “Branch-
mispredict level parallelism (blp) for control independence,” in 2008 IEEE 1/th
International Symposium on High Performance Computer Architecture, 2008,

pp. 62-73.

M. Moudgill, K. Pingali, and S. Vassiliadis, “Register renaming and dynamic
speculation: an alternative approach,” in Proceedings of the 26th Annual Inter-
national Symposium on Microarchitecture, ser. MICRO 26. Washington, DC,
USA: IEEE Computer Society Press, 1993, p. 202-213.

112

https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/3503222.3507745

[37]

[38]

[39]

[40]

[41]

[42]

[43]

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: an al-
ternative to very large instruction windows for out-of-order processors,” in 9th In-

ternational Symposium on High-Performance Computer Architecture, (HPCA),
2003.

A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, “Precise Runahead Execu-
tion,” in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020.

A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, “Vector runahead,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA), 2021, pp. 195-208.

A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Decoupled vector runahead,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 17-31. [Online].
Available: https://doi.org/10.1145/3613424.3614255

A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibanez, V. Vinals-Yfera,
and A. Ros, “Berti: an accurate local-delta data prefetcher,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022, pp.
975-991.

S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction pointer
classifier-based spatial hardware prefetching,” in 2020 ACM/IEEE }7th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 118-131.

S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar
processors,” in Proceedings of the 24th Annual International Symposium on
Computer Architecture, ser. ISCA '97. New York, NY, USA: Association
for Computing Machinery, 1997, p. 206-218. [Online]. Available:
https://doi.org/10.1145/264107.264201

113

https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1145/264107.264201

[44]

[45]

[46]

[47]

[48]

[49]

B. Panda, “Clip: Load criticality based data prefetching for bandwidth-
constrained many-core systems,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 714-727. [Online].
Available: https://doi.org/10.1145/3613424.3614245

S. Patel, M. Evers, and Y. Patt, “Improving trace cache effectiveness with branch
promotion and trace packing,” in Proceedings. 25th Annual International Sym-

posium on Computer Architecture (Cat. No.98CB36235), 1998, pp. 262-271.

S. Pruett and Y. Patt, “Branch runahead: An alternative to branch prediction
for impossible to predict branches,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 21, 2021, p.
804-815. [Online]. Available: https://doi.org/10.1145/3466752.3480053

G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction prefetch-
ing,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, 1999, pp. 16-27.

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency ap-
proach to high bandwidth instruction fetching,” in Proceedings of the 29th An-
nual ACM/IEEE International Symposium on Microarchitecture, ser. MICRO
29. USA: IEEE Computer Society, 1996, p. 24-35.

E. Safi, A. Moshovos, and A. Veneris, “T'wo-stage, pipelined register renaming,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
no. 10, pp. 1926-1931, 2011.

A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais, A. Seznec,
and P. Michaud, “Long term parking (LTP): Criticality-aware resource allocation
in OOO processors,” in 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2015.

114

https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/3466752.3480053

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Seznec, “A new case for the tage branch predictor,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-44, 2011, p. 117-127. [Online]. Available: https:
//doi.org/10.1145/2155620.2155635

——, “Tage-sc-1 branch predictors again,” in 5th JILP Workshop on Computer
Architecture Competitions (JWAC-5): Championship Branch Prediction (CBP-
5), 2016.

R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decoupling: An approach for
timely, non-speculative branching,” IFEE Transactions on Computers, vol. 64,

no. 8, pp. 2182-2203, 2015.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ser. ASPLOS X, 2002, p. 45-57.
[Online]. Available: https://doi.org/10.1145/605397.605403

Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin, “A
hierarchical neural model of data prefetching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ~ASPLOS ’21, 2021, p. 861-873. [Online].
Available: https://doi.org/10.1145/3445814.3446752

F. M. Sleiman and T. F. Wenisch, “Efficiently scaling out-of-order cores for simul-

taneous multithreading,” in 43rd Annual International Symposium on Computer

Architecture (ISCA), 2016.

S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spatial
memory streaming,” in 33rd International Symposium on Computer Architecture

(ISCA’06), 2006, pp. 252-263.

S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton, “Continual flow

pipelines: Achieving resource-efficient latency tolerance,” IEEE Micro, 2004.

115

https://doi.org/10.1145/2155620.2155635
https://doi.org/10.1145/2155620.2155635
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/3445814.3446752

[59]

[60]

[61]

[62]

[63]

[64]

[65]

V. Srinivasan, R. B. R. Chowdhury, and E. Rotenberg, “Slipstream processors re-

7

visited: Exploiting branch sets,” in 47th International Symposium on Computer

Architecture (ISCA), 2020.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors: Im-
proving both performance and fault tolerance,” SIGPLAN Not., vol. 35, no. 11,
Nov. 2000.

——, “Slipstream processors: Improving both performance and fault tolerance,”
SIGPLAN Not., vol. 35, no. 11, p. 257-268, nov 2000. [Online]. Available:
https://doi.org/10.1145/356989.357013

K. Tran, T. E. Carlson, K. Koukos, M. Sjalander, V. Spiliopoulos, S. Kaxi-
ras, and A. Jimborean, “Clairvoyance: Look-ahead compile-time scheduling,” in
2017 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), 2017.

P. H. Wang, J. D. Collins, H. Wang, D. Kim, B. Greene, K.-M. Chan, A. B.
Yunus, T. Sych, S. F. Moore, and J. P. Shen, “Helper threads via virtual
multithreading on an experimental itanium@®) 2 processor-based platform,” ser.
ASPLOS XI. New York, NY, USA: Association for Computing Machinery, 2004,
p. 144-155. [Online|. Available: https://doi.org/10.1145/1024393.1024411

S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt, “Branchnet: A convolu-
tional neural network to predict hard-to-predict branches,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp.
118-130.

C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in Proceedings of the 28th Annual International Symposium on
Computer Architecture, ser. ISCA ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 2-13. [Online]. Available:
https://doi.org/10.1145/379240.379246

116

https://doi.org/10.1145/356989.357013
https://doi.org/10.1145/1024393.1024411
https://doi.org/10.1145/379240.379246

[66] C. B. Zilles and G. S. Sohi, “Understanding the backward slices of performance
degrading instructions,” ser. ISCA ’'00. New York, NY, USA: Association
for Computing Machinery, 2000, bp. 172-181. [Online]. Available:
https://doi.org/10.1145/339647.339676

117

https://doi.org/10.1145/339647.339676

	List of Tables
	List of Figures
	Chapter 1: Introduction
	The Problem
	Impact of Branch Mispredictions and Cache Misses
	Limitations of the Existing Execution Model

	Criticality Driven Execution
	Identifying Critical Instructions
	Precomputation for Hard-To-Predict Branch Chains
	Preferential Allocation for Long-Latency Load Chains

	Building a Unified Execution Model
	Contributions
	Thesis Statement
	Dissertation Organization

	Chapter 2: Background and Prior Work
	Prediction Mechanisms
	Branch Prediction
	Data Prefetching

	Precomputation
	Compiler Generated Threads
	Runtime Precomputation Threads
	Slipstream
	Using Precomputation to Resolve Branches Early

	Runahead Execution
	Compiler Solutions
	Other Related Work
	Baseline Out-Of-Order Core

	Chapter 3: Critical Chain Construction
	Marking Hard-To-Predict Branches and Long-Latency Loads
	Critical Count Tables

	Identifying Dependence Chain Instructions
	Fill Buffer
	Backward Dataflow Walk
	Storing Dependence Chain Instructions

	Tracking Memory Dependencies
	Tracing Longer Dependence Chains
	Combining Chains across Multiple Control Flows
	Steady State Operation
	Block Cache

	Reconstructing the Dependence Chains at Fetch

	Chapter 4: Speculative Precomputation for Hard-To-Predict Branch Chains
	CDE Precomputation Thread
	Benefits of using the Main Branch Predictor
	Load Prefetching Effect

	Implementation Overview
	Frontend
	Fetch
	Rename and Allocation

	Backend
	Freeing Physical Registers
	Dealing with Stores
	Branch Misprediction Flushes
	Terminating the CDE Precomputation Thread

	Hardware Overhead
	Evaluation
	Methodology
	Performance
	Load Prefetching Effect
	Varying the Precomputation Thread Density
	Comparison against Branch Runahead
	On-Core vs Dedicated Execution Engine
	More Sensitivity Studies

	Chapter 5: Preferential Allocation for Long-Latency Load Chains
	Improving Memory Level Parallelism
	Partitioning Backend Resources
	Impact on Branch Misprediction Latency

	Frontend
	Fetch
	Rename
	Dependence Violations in the Critical Stream

	Backend
	Scheduling
	Dynamically Changing the Partition Sizes
	Branch Mispredictions
	Consistency Considerations and Memory Disambiguation
	In-Order Retirement
	Terminating Preferential Allocation

	Hardware Overhead
	Evaluation
	Performance
	Dealing with Branch Mispredictions
	Varying the Critical Stream Density
	Comparison Against Runahead Execution
	Reducing the MSHR sizes

	Chapter 6: Building a Unified Model
	Percentage of Instructions in Dependence Chains
	Experiment Design
	Benchmark Categorization
	Improving Loads and Branches Individually

	Unified Execution Model
	Why the Simple Approach does not Work
	Accelerating Loads and Branches together

	Implementation Overview
	Tracing Chains for the Precomputation Thread and the Critical Stream
	Critical Count Tables
	Fill Buffer
	Backward Dataflow Walk

	Dynamically Adjusting how Chains are Accelerated
	Frontend Changes for the Unified Model
	Fetch
	Rename
	Allocation

	Backend Changes for the Unified Model
	Hardware Overhead
	Evaluation
	Performance
	Misprediction Coverage
	Comparison against a Slipstream-Like Approach
	Parameter Tuning

	Chapter 7: Conclusion and Future Work
	Conclusion
	Future Work

	References

