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Abstract—Bank and bank group conflicts are major perfor-
mance bottlenecks for memory intensive workloads. Idealized
experiments show removing bank and bank group conflicts
collectively can improve performance by up to 37.5% and by
22.5% on average for our mix of multi-programmed memory
intensive workloads. We propose the Duplicon Cache to mitigate
bank and bank group conflict penalties by duplicating select lines
of data to an alternate bank group, giving the memory controller
the freedom to source the data from the bank group which avoids
conflicts. The Duplicon Cache is entirely implemented in the
memory controller and does not require changes to commodity
memory. We identify and address the main challenges associ-
ated with duplication: 1) tracking duplicated data efficiently,
2) identifying which data to duplicate, and 3) replacing stale
duplicated data while protecting useful ones. Our evaluations
show the Duplicon Cache configured with 128MB of storage (out
of 16GB of main memory) improves performance by 8.3% while
reducing energy by 5.6%.
Index Terms—bank conflicts, bank group conflicts, duplication,

set-associative cache, sectored cache, demand activates filtering,
usefulness tracking, probabilistic replacement,

I. INTRODUCTION

Main memory, such as Dynamic Random−Access Memory
(DRAM), is organized into banks that allow independent mem−
ory requests to be serviced concurrently, increasing parallelism
and performance. Conflicting requests that map to the the same
bank, however, are serviced serially.

Such bank conflicts can be mitigated if conflicting requests
can alternatively be serviced by another idle bank. This is
possible if the data for the conflicting requests were previously
duplicated to the other idle bank. Allowing data duplication
across banks decreases the likelihood of bank conflicts at a cost
of increased storage and coherence complexity. This tradeoff
can be exploited to improve performance. To this end we
propose Duplicon, which mitigates the effects of bank conflicts
by duplicating select data in memory to an alternate bank.
Duplicated data have lower access latencies on average, as
they can be serviced by the alternate bank when the home
bank is busy. By lowering the average access latency, Duplicon
effectively acts as a cache of main memory, whereby a line is
present in the Duplicon Cache if it has been duplicated.

We thank Intel Corporation and the Cockrell Foundation for their continued
generous financial support of the HPS Research Group.
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Fig. 1. Bank groups, banks, rows, and columns.

The Duplicon Cache is entirely implemented in the memory
controller and does not require changes to commodity memory.
Its main features are 1) a set−associative and sectored organiza−
tion to allow efficient tracking of duplicated data, 2) Demand
Activates Filtering to identify the right rows to duplicate, and
3) Usefulness Tracking and Probabilistic Replacement to allow
stale duplicated data to be replaced while protecting useful
duplicated data from being overwritten. Our evaluation shows
Duplicon improves performance by 8.3% while reducing en−
ergy by 5.6% on average.

The rest of the paper is organized as follows: Section
II provides background information on DRAM. Section III
motivates how data duplication can mitigate bank and bank
group conflicts. Section IV describes the key components
of the Duplicon Cache. Section V describes the evaluation
methodology and presents the results. Section VI discusses
the related work, and Section VII summarizes the paper.

II. BACKGROUND

A DRAM bank is divided into rows, with each row divided
into columns. Only one row can be activated at any given
time in each bank. Accesses to data in the already activated
row are row buffer hits and have much lower latency. If one
wishes to access data in a row different than the one currently
activated, one must first Precharge the bank, then Activate the
desired row. Once the desired row is activated, then Read and
Write commands can be issued to desired columns within the
activated row.
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Fig. 2. Four concurrent memory requests to different rows in (a) the same bank (all bank conflicts), (b) different banks of the same bank group (all bank
group conflicts), and (c) different bank groups (no conflicts); ACT = Activate, PRE = Precharge; figure is not to scale.

Circuit level limitations impose timing constraints on when
Precharge, Activate, Read, and Write operations can be
issued. When multiple memory requests map to different
rows of data within the same bank, several long latency
Precharge/Activate/Read(Write) operations must be performed
serially to the same bank, degrading both memory latency and
bandwidth. Such instances of requests mapping to different
rows in the same bank are called bank conflicts.

Adding more banks reduces the likelihood of bank conflicts,
but is costly. New memory architectures such as the fourth
generation Double Data Rate (DDR4) DRAM reduce the cost
of adding additional banks by partitioning banks hierarchically
into bank groups, and imposing additional timing constraints
on back−to−back operations to the same bank group. For
example, additional delays are required for both back−to−back
Read as well as back−to−back Activate operations to the same
bank group. We use the term bank group conflicts to denote
cases where memory requests to the same bank group incur
additional delays that were otherwise not necessary had the
requests been mapped to different bank groups.

Fig. 1 shows the organization of a DDR4 DRAM device into
bank groups, banks, rows, and columns. We use the notation
bank (m,n) to denote bank n in bank group m. There are
16 banks, partitioned into 4 bank groups. Each bank has 64K
rows, and each row has 1K columns 1.

III. MOTIVATION

A large system with many cores/threads sharing the memory
system can have multiple outstanding memory requests to
different rows at the same time. Fig. 2 shows how four

1these are the row/column dimensions for the 8Gb DDR4−3200 x8 DRAM
device used in our evaluation; see Table I and [1] for details

concurrent memory requests to different rows will be serviced
if the requests are to (a) the same bank (all bank conflicts),
(b) different banks of the same bank group (all bank group
conflicts), or (c) different bank groups (no conflicts). All banks
are initially precharged.

In (a), the four requests are completely serialized. The
service latencies are dominated by tRAS , the minimum delay
between an Activate(ACT) and a subsequent Precharge(PRE),
and tRP , the minimum delay between a Precharge and a
subsequent Activate. In total, 244 DRAM cycles, or 488
processor cycles (assuming DDR4−3200 DRAM and 3.2GHz
processor) were required to service all four requests.

In (b), since the requests are to different banks, the Activate
operations are partially overlapped, but separated by tRRD L

(i.e., long version of tRRD), the minimum delay between
Activates to the same bank group. Each Read operation can
proceed tRCD cycles after the appropriate row has been
activated. The Reads are separated by tCCD L (i.e., long
version of tCCD), which is the minimum delay between back−
to−back Reads (or back−to−back Writes) to the same bank
group. In total 46 DRAM cycles (92 processor cycles) were
required to service all four requests.

In (c) the requests are overlapped to the fullest extent
possible. The Activates are now only separated by tRRD S

(i.e., short version of tRRD), the minimum delay between
Activates to the different bank groups. Note this delay is
halved compare to (b). Similarly the Reads are separated by
tCCD S . In total 34 cycles (68 processor cycles) were required
to service all four requests.

We devised a series of idealized experiments to measure
the impact of bank and bank group conflicts on real work−
loads. The first experiment (i) approximates converting all
bank conflicts into bank group conflicts by relaxing the bank
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Fig. 3. Performance improvement when bank and/or bank group conflicts are
removed or mitigated.

mapping within a bank group, allowing requests to be serviced
by any bank in the same bank group: any request mapped to
bank (m,n) can now alternatively be serviced by banks (m,0),
(m,1), (m,2), or (m,3)2, in essence converting all cases in (a)
to cases in (b).

The second experiment (ii) approximates removing all bank
group conflicts (but keeping bank conflicts) by setting the
long variant (same bank group) of each timing constraint to
the same value as the short variant (different bank group);
that is, we set tRRD L = tRRD S , tCCD L = tCCD S , and
tWT R L = tWTR S

3, in essence converting all cases in (b) to
cases in (c). Cases in (a), however, remain bank conflicts and
still suffer from serialized Precharges/Activates to the same
bank.

The third experiment (iii) approximates removing both
bank and bank group conflicts by relaxing all bank mapping
constraints, allowing any request to be alternatively serviced
by any other bank/bank group2, converting both (a) and (b)
accesses into (c) accesses.

Fig. 3 shows the results of the three experiments across
a set of eleven 4−core multi−programmed workloads formed
from the memory intensive SPEC 2006 benchmarks and
Graph 500. The workloads are listed in Table II. Removing
bank conflicts in (i) improved performance by 7.2% − 25.9%
across the workloads, and by 14.8% on average; removing
bank group conflicts in (ii) improved performance by 5.7%
to 25.2% across the workloads, and by 11.6% on average;
removing both bank and bank group conflicts in (iii) improved
performance by 12.6% to 37.5% across the workloads, and by
22.5% on average. The results show removing bank and bank
groups significantly improve performance, and removing both
improved performance far more than removing either one in
isolation.

Experiment (iii) approximated removing all bank and bank
conflicts by allowing any request to be serviced by any other
bank/bank group. Such relaxation is possible if all data are

2the request still accesses the same row and columns at the new bank
3
tWT R L/S is the delay between the end of a write burst and a subsequent

Read to the same/different bank group

fully duplicated to all bank/bank groups; unfortunately, full
duplication has unacceptable storage and coherence overheads.

While full duplication is infeasible, we find limited dupli−
cation is sufficient to remove most bank/bank group conflict
penalties. In experiment (iv), only the bank mapping to the
next bank group is relaxed, so requests to banks in bank group
m can only be alternatively serviced by banks in bank group
m+1 (mod 4). Fig. 3 shows that (iv) retains most of the benefit
of (iii), improving performance by 12.4% − 35.5% across
workloads, and by 20.2% on average. Experiment (v) further
restricts duplication such that requests to bank (m,n) can only
alternatively be serviced by bank (m+1 (mod 4), n). This
improves performance by 10.7% − 29.7% across workloads,
and by 17.2% on average, which is worse than (iii) and (iv),
but still substantial.

(iv) and (v) only require duplication of data between pairs
of bank groups, as opposed to all−to−all duplication. We can
further reduce the level of duplication required by applying the
caching principle and only duplicate a select subset of data
from each bank group to the next bank group. To this end
we propose the Duplicon Cache, a technique that mitigates
the penalties of bank and bank group conflicts by duplicating
select lines of data to an alternate bank group. We identify
and address the following key components of Duplicon:

1) reserving storage space for duplicates in each bank (Sec−
tion IV−A)

2) identifying the right granularity of duplication (Section
IV−B)

3) determining where to duplicate data to (IV−C)
4) tracking duplicated data at the memory controller (IV−D)
5) limiting the duplication overhead (IV−E)
6) ensuring coherence between duplicates (IV−F)
7) determining which data to duplicate (IV−G)
8) determining which duplicated data to replace (IV−H)

IV. DUPLICON CACHE

A. Data Store: reserving storage for duplicates

A cache is made up of a Data Store and a Tag Store.
The Duplicon Cache Data Store is created by reserving space
in different bank groups for storing duplicated data. This is
done by reserving a small region at the end of the physical
memory address space at boot time, as shown in Fig. 4(a).
We called this reserved physical address space the Reserved
Storage. With 2m bytes of total physical memory capacity, we
reserve 2k bytes of space at the end of the address space to
store duplicate data. The Operating System (OS) is then led to
believe there are only 2m−2k bytes of physical memory avail−
able, and will not allocate memory in the Reserved Storage.
In our evaluated configuration m = 34 and k = 27; that is,
we reserve 227B = 128MB of storage out of 234B = 16GB

of total physical memory, for a storage overhead of 1/128.

B. Line Size: granularity of duplication

The width of the DDR4 DRAM data bus is 64 bits.
Individual DRAM devices have a narrower interface than the
width of the data bus − for example, x4 devices have a 4
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bit interface; x8 devices 8 bits; x16 devices 16 bits. DRAM
devices are combined to match the width of the data bus. The
combined DRAM devices form a DRAM rank. For example,
16 x4 devices form a rank (or 8 x8 devices; 4 x16 devices).
Devices in the same rank operate in lockstep on the same
commands and addresses, and each (bank group, bank, row,
column) tuple specifies a 64 bit (8 bytes) piece of data in a
rank.

DDR4 DRAM transfers data in bursts. The typical burst
length is 8, so each access results in a burst of 8 columns in
succession. The columns transferred are aligned, so columns
0−7 are always transferred together in the same burst, while
columns 8−15 belong to another burst, etc. Since each column
specifies an 8 byte piece of data in the rank, and since
8 columns are transferred in a burst on every access, the
granularity of access to DDR4 DRAM is 8 × 8 = 64 bytes.
We thus choose 64 bytes as the Duplicon Cache line size, the
same as the granularity of access of DRAM, and duplicate
data at 64 byte granularity.

C. Set Associativity: where to duplicate data to

Several ranks may share the same set of
data/command/address buses that connect the DRAM to
the processor. Each set of data/command/address buses is

called a channel, and there are typically multiple channels.
Data in DRAM is thus uniquely identified by its (Ch=channel,
Ra=rank, BG=bank group, Ba=bank, R=row, Col=column)
tuple. Different channels may be controlled by different
memory controllers. The hierarchy of memory controllers,
channels, ranks, and banks is shown in Fig. 5.

A mapping function maps a physical address to its corre−
sponding (Ch, Ra, BG, Ba, R, Col) tuple. Each component
of the tuple is computed as a hash of a subset of physical
address bits. Fig. 4(b) shows an example mapping function:
bit 17 is the channel bit (implying there are 2 channels); there
are no rank bits (implying there is 1 rank per channel); bits
14 and 13 are the bank group bits; bits 16 and 15 the bank
bits; bits 33 down to 18 the row bits (implying 64K rows per
bank); bits 12 down to 3 the column bits (1k columns per
row); bits 2 down to 0 specify the byte on the 8 byte wide
data bus (i.e., offset within a column). We use this mapping
in our evaluation, as it maximized the baseline performance
among the different mappings we tried (including mappings
that placed the channel bits lower).

All data in memory can be found in its home location,
pointed to by its home address (Fig. 4(b)). Data may then
be duplicated from its home location to the Reserved Storage.
To access the Reserved Storage, the high bits m−1 down to k

of the address are set to 1, while the low k bits dictate where
in the Reserved Storage we are accessing. Where we duplicate
data to in the Reserved Storage is a principal design decision
for the Duplicon Cache and is subject to various constraints
and tradeoffs

First, we must duplicate to a different bank group from
the home location. This means the Reserved Storage must
span at least two bank groups, requiring an overlap between
the bits used to hash to the bank group and the low k bits
of the address. In practice this overlap almost always exists,
since the bank group bits are almost always placed among
the lower order, higher entropy address bits to maximize bank
group interleaving and minimize bank group conflicts. Some
mapping schemes may include bits from outside the low k bits
−by, for example, xor−ing lower order bits with higher orders
bits above bit k to produce the bank group. This is fine as long
as multiple bank groups can be reached while the address bits
k and above are set to 1.

Next, Duplicating data across channels is undesirable as
it necessitates moving data between different memory con−
trollers, incurring additional data movement costs. Thus Dupli−
con only duplicates data within the same channel. This means
only data residing in channels spanned by the Reserved Stor−
age can be duplicated. In practice the Reserved Storage will
almost always span all channels, since the channel bits, like
the bank group bits, are usually placed among the lower order,
higher entropy address bits to maximize channel interleaving.

While hard constraints exist for the duplication destination
bank group (must be different from the home location) and the
destination channel (must be the same), some flexibility exists
for the duplication rank/bank/row/column. On one extreme
we can have a direct−mapped scheme, shown by Fig. 4(c),
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where the low k bits of the duplication destination address are
identical to the low k bits of the home address, except that the
bank groups bits (bits 14 and 13) BG1BG0 are replaced by
BG+

1 BG+
0 , where BG+ = BG + 1 (mod 4). In this scheme

each line of data can only be duplicated to a single location in
bank group BG+. Alternatively, Duplicon can be organized
as a 4−way set−associative cache, shown in Fig. 4(d). Here,
in addition to the bank group bits BG1BG0 being replaced
by BG+

1 BG+
0 , the bank bits (16 and 15) are now completely

free in the duplication destination address, meaning data can
be duplicated to any of 4 banks in bank group BG+. Note
the analogy to traditional caches: with traditional caches, a
direct−mapped scheme is one in which the data can only be
cached in a single location, while an j−way set−associative
scheme is one in which the data may be cached in any one of
j ways in a given set, and all of them need to be searched for
a cache hit. In our case, the 4 banks of bank group BG+ form
the 4 ways of our 4−way set−associative Duplicon Cache. As
with traditional caches, the original home address bits can be
divided into (i) offset bits that dictate the byte offset within a
line, (ii) index bits that dictate the set of locations to which the
data may be cached, and (iii) tag bits that need to be tracked
in order to differentiate between different data that map to
the same set (i.e., have the same index bits). The breakdown
of offset, index, and tag bits for both the direct mapped and
4−way set−associative schemes are shown in Fig. 4.

The direct−mapped cache corresponds to experiment (v) in
Fig. 3, where data in bank (m,n) can only be alternatively
serviced by bank (m+1 (mod 4), n); the 4−way set−associative
cache corresponds to experiment (iv), where requests to bank
group m can be alternatively serviced by any bank in bank
group m+1 (mod 4). Fig. 3 shows the 4−way set−associative
cache performs better, so the 4−way set−associative configura−
tion is used in the rest of the paper.

D. Tag Store: duplicate tracking

Duplicon maintains a Tag Store in a dedicated SRAM
table at the memory controller to track which data have been
duplicated. The Tag Store is searched upon each memory
request to check if a duplicated copy exists.

The Duplicon Cache is much larger than an ordinary pro−
cessor cache; we sized the Duplicon Cache to be 128MB in
our evaluation. Storing tags for so much data is expensive.
Duplicon reduces the storage cost of tags via a sectored
cache design [2], [3] where the cache sectors are DRAM
rows. All columns in a sector share a single Address Tag,
reducing the size of the Tag Store. The Tag Store additionally
maintains valid bits per sector to mark which columns have
been duplicated. One valid bit is required per Duplicon Cache
line. As the Duplicon line size is 8 columns (64B), one valid
bit is needed for every 8 columns; 128 valid bits are needed
for the 1K columns of each sector. Collectively the valid bits
form the Valid Columns Mask.

Since different channels may have different memory con−
trollers, a separate Tag Store is maintained for each channel
to track duplicated data within that channel. At each channel,
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Fig. 6. Duplicon Cache Tag Store.

we use the non−column (because all columns of the same row
belong to the same sector and share the same Address Tag)
index bits from the home address to index into a set in the
Tag Store. Each way in the set requires:

1) an Address Tag to identify the sector (i.e., which DRAM
row the sector contains)

2) a Valid Columns Mask to identify which columns have
valid data

3) a Demand Activates Counter (DAC), saturating counter
used for the Duplicon Cache insertion policy (Section
IV−G)

4) a Useful Bit, used for the Duplicon Cache replacement
policy (Section IV−H)

Fig. 6 shows the Tag Store for a particular channel. For an
access to hit in the Duplicon cache, the Address Tag for the
sector needs to match, and the corresponding bit in the Valid
Columns Mask needs to be set.

Section V−C1 addresses the Tag Store area cost. The Tag
Store requires 142KB/channel in our evaluated configuration,
for a total of 284KB with two channels.

E. Cache Fill: duplication

Data can be filled (i.e., duplicated) into the Duplicon Cache
in two cases. The first is when the data is read from memory on
a normal read request; the second is when the data is written
to memory on a normal write request. In both cases the data
passes through the memory controller, at which time a new
duplication write request to the appropriate location in the Re−
served Storage is created. Once created, the duplication write
request gets queued and serviced by the memory controller
like normal write requests.
Reducing write-caused interference: Normal write requests

already interfere with the servicing of read requests. Typically
memory controllers have write buffers [4]–[6] that batch up
write requests, allowing read requests to be serviced without
interference until the write buffer is drained. Duplicon simi−
larly relies on the write buffer to batch up duplication write
requests to minimize write−caused interference. If the write
buffer is full, then duplication write requests can simply be
dropped.

F. Coherence

Existing duplicates must be invalidated on every write
request to the line by clearing the appropriate bit of the Valid
Columns Mask in the Tag Store entry. In addition, the write
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buffer must be searched to remove any pending duplication
write requests to the line. This does not increase the write
buffer hardware complexity, as existing write buffers already
need to support searches for a particular line to allow data
from buffered write requests to be forwarded to subsequent
matching read requests.

G. Duplication policy

1) Demand Activates Filtering: Duplication incurs non−
trivial costs in terms of storage and extra memory write traffic;
thus it is important to only duplicate data that are likely to
impact program performance. Duplicon uses two criteria to
determine whether data should be duplicated. First, Duplicon
tracks how often the data is accessed via demand (as opposed
to prefetch) read requests (including requests that began as
prefetch requests but then matched a demand request), as such
requests are likely to be on the program critical path. Second,
Duplicon tracks how often the data suffers from DRAM row
misses/conflicts, as such accesses incur longer latencies.

Both criteria can be measured by counting the number
of Demand Activates to the data. A Demand Activate is an
Activate to a row for a demand read request. The number of
Demand Activates identifies the number of demand non−row
buffer hit accesses to the data, as row buffer hits do not require
an Activate.

Duplicon tracks the number of Demand Activates in the
Tag Store, which maintains a saturating Demand Activates
Counter(DAC) for each cache sector (Section IV−D). We
allocate a sector in one of the ways of the Tag Store on the first
Demand Activate to the row, and increment the DAC for each
subsequent Demand Activate. Duplication of lines in the row
only proceeds after the DAC surpasses a threshold (Thrsh),
but once the threshold is reached we duplicate on all accesses,
not just Demand Activates. We swept over a large range of
Thrsh values and found 15 to be a sweet spot for our evaluated
configuration.
2) Number of duplicates allowed: The other parameter in

the insertion/duplication policy is the number of duplicates
allowed. Allowing multiple duplicates of the same data further
decreases the likelihood of bank conflicts for that data, but at
the cost of storage. Results in Section V show that having more
than one duplicate provides little value, so we only allow a
single duplicate.

H. Replacement policy

The Duplicon Cache has limited storage and associativity.
Once a set is fully occupied, any new row that maps to the
same set must either overwrite an existing sector in the set
(replace), or not be allocated in the set (bypass).
1) Usefulness Tracking: Duplicon adopts the same replace−

ment policy as the TAGE branch predictor [7] and tracks the
usefulness of each duplicated cache sector via the Useful Bit
in the Tag Store (Section IV−D). Sectors are initially marked
not useful, but become useful when a duplicated column
in the sector gets used (i.e., when the duplicated column
gets sourced by a read request because of a conflict at the

home bank/bank group). Sectors that are marked as useful
definitely cannot be replaced; periodically all the Useful Bits
are cleared. We swept over a range of Useful Bit reset periods
and found resetting the Useful Bits every million memory
requests worked well, although the sensitivity to the reset
period is quite low provided the period is large enough.

Based on the values of the Useful Bit and the Demand
Activates Counter(DAC), each cache sector in main memory
is in one of four states:

1) Invalid (DAC = 0): no row has been allocated to the
cache sector yet; the cache sector is empty

2) Monitoring (1 ≤ DAC < Thrsh): a row has been
allocated to the cache sector, and we are tracking Demand
Activates to increment the DAC, but not yet duplicating

3) Duplicating-not useful (DAC ≥ Thrsh, Useful=0): a
row has been allocated to the cache sector and we are
duplicating on all accesses (even writes and prefetches),
but no duplicated data has been used; the sector may be
replaced

4) Duplicating-useful (DAC ≥ Thrsh, Useful=1): a row has
been allocated to the cache sector and we are duplicating
on all accesses (even writes and prefetches), and dupli−
cated data has been used; the sector may not be replaced

2) Probabilistic Replacement: The Useful Bit protects sec−
tors in the Duplicating-useful state from being overwritten,
but does not protect sectors in other states. To give sectors
in the Monitoring and Duplicating-not useful time to reach
the Duplicating, useful state, we introduce a parameter ε

which controls the probability that a sector in states Moni-
toring or Duplicating-not useful can be replaced. A properly
chosen ε parameter should give time for beneficial sectors
in Monitoring and Duplicating-not useful to become useful,
while still eventually replacing the sectors that never do. We
performed a sweep of the ε parameter and used ε = 1/256 in
our experiments.

The state machine for each cache sector is shown in Fig.
7. All cache sectors start in the Invalid state, and transition
to the Monitoring state on the first Demand Activate, at
which point the sector is allocated to the row. Sectors in the
Monitoring state have their DAC incremented on each sub−
sequent Demand Activate to the row. When the DAC reaches
Thrsh, the sector transitions to the Duplicating-not useful state.
From this state data is duplicated on each subsequent access
(including prefetches and writes). If all the sectors in the set
are allocated, then sectors in the Monitoring and Duplicating-
not useful states may be replaced with probability ε each time
another row wishes to allocate into the set. If a replacement
occurs, then the Address Tag is updated to the new row,
the Valid Columns Mask and Useful Bit are cleared, and
the Demand Activates Counter is set to 1, putting the new
row/sector in the Monitoring state. Sectors in Duplicating-not
useful are promoted to Duplicating, useful when a duplicated
column is used. Sectors in Duplicating-useful are protected
from replacement. On a Useful Bit reset all sectors in the
Duplicating-useful state are demoted to the Duplicating-not
useful state.
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Fig. 8 is a flow chart that summarizes the sequence of events
on read requests; Fig. 9 summarizes the sequence of events
on write requests. Actions in both flow charts are enclosed in
boldface boxes.

V. EVALUATION

A. Methodology

We evaluated our mechanism on an execution−driven, cycle−
accurate simulator for a 4−core out−of−order x86 processor.
The frontend of the simulator is based on Multi2Sim [8].
The simulator models port contention, queuing effects, and
bank conflicts throughout the cache hierarchy and includes
a detailed DDR4 SDRAM model which models tCL, tCWL,

Threshold?
Cache Sector allocated
and DAC

write buffer full?

(1) Create Duplication Write Request
(2) Mark duplicated columns as valid

in Valid Columns Mask

Write to home copy

(1) Invalidate all existing duplicates
(2) Kill all pending duplication

write requests

Yes

No

Yes

No

Fig. 9. Flow chart for write requests.

tRP , tRCD, tRAS , tRTP , tCCD(L/S), tRRD(L/S), tFAW ,
tWTR(L/S), and tWR. Table I describes our baseline configu−
ration. Chip power and energy are modeled using McPAT [9],
and DRAM power and energy are modeled using CACTI [10].

The bank conflict probability is dependent on the
banks/thread ratio in the system; the higher the ratio, the
less likely bank conflicts. The latest Intel Xeon Processor E7−
8894 v4 server CPU [11] supports 56 threads on 6 DDR4
channels. Servers are typically configured with 2 or 4 ranks per
channel for optimal memory performance; loading the channel
beyond 4 ranks results in having to run the channel at a lower
frequency, hurting performance [12]. With 16 banks per rank,
4 ranks per channel, and 6 channels, there are 16×4×6 = 384
banks in the system for 56 threads, for a banks/thread ratio of
384/56 = 6.86. Our evaluated configuration has 2 channels, 1
rank per channel, and 16 banks, for a total of 32 banks, and 4
threads, resulting in a banks/thread ratio of 8. This is higher
than the banks/thread ratio in a current state−of−the−art system;
hence our evaluation conservatively underestimates the impact
of bank conflicts.

To mimic the effects of virtual−to−physical address trans−
lation in our simulator, we pass the Virtual Page Number
(VPN) concatenated with the processor ID through a hash
function (Paul Hsieh’s SuperFastHash [13]) to generate the
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TABLE I
BASELINE CONFIGURATION.

Core 4−Wide Issue, 128 Entry ROB, RS size 48,
Hybrid Branch Predictor, 3.2 GHz Clock

L1 Caches 32KB I−Cache, 32KB D−Cache,
64 Byte Cache Lines, 2 Reads Ports,
1 Write Port, 3 Cycle Latency,
4−way Set−Associative, Write−back

Last Shared 4MB, 64 Byte
Level Cache Lines, 12 Cycle Latency, 8−way
Cache Set−Associative, Write−back, Inclusive
Memory 128 Entry Memory Queue, FR−FCFS [15]
Controller Open−Page Policy
Prefetcher Stream Prefetcher [16]: Streams 64,

Distance 64, Queue 128, Degree 4 with
Feedback Directed Prefetching(FDP) [17]
to throttle prefetcher

DRAM 2 Channels, 1 Rank/Channel,
16 Banks/Rank, 8Gb DDR4−3200 x8 chips
Bus Frequency 1.6GHz (DDR 3.2GHz)
tRCD−tRP −tCL: 22−22−22
8KB Row Buffer (1KB x8)

“Physical Frame Number”, which is then combined with the
page offset to form the physical address. The DRAM chan−
nel/bank group/bank/row/column addresses are then computed
using the mapping function in Fig. 4(b) from this generated
physical address. The processor ID needs to be passed to the
virtual−to−physical SuperFastHash function to ensure that the
same virtual page from different benchmarks running in the
same multi−programmed workload do not get mapped to the
same physical frame. By introducing this additional virtual−
to−physical hashing in our simulation, we already maximize
the entropy in the channel/bank group/bank; consequently,
we believe bank conflict rates we see in our evaluations are
probably very close, if not better, than bank conflict rates
achievable by any actual hashing function (including ones that
XOR bank group/bank bits with the low order row bits).

The ten most memory−intensive SPEC 2006 benchmarks
with the highest single−threaded Last−Level−Cache (LLC)
misses per kilo instructions (MPKI) without prefetching, along
with the Graph 500 benchmark, were used to form 11 ran−
domized 4−core multi−programmed workloads such that each
benchmark appears in four workloads. Table II shows the
workloads. Each workload is simulated until every application
in the workload has completed at least 800 million instructions
from a representative SimPoint [14]. Static power of shared
structures is dissipated until the completion of the entire work−
load. Dynamic counters stop updating upon each benchmark’s
completion.

We report the Harmonic Mean of Weighted-IPCs [18]
for Chip−Multiprocessor (CMP) performance. The Harmonic
Mean of Weighted-IPCs is the reciprocal of the Average
Normalized Turnaround Time(ANTT) [19], and is a measure
of both fairness and system throughput [19], [20]. All perfor−
mance graphs report Harmonic Mean of Weighted-IPCs unless
otherwise stated. We additionally report the Weighted Speedup
[21] and Unfairness [20], [22], [23] for our best performing
configuration. Weighted Speedup differs from Harmonic Mean

TABLE II
EVALUATED MULTI−PROGRAMMED WORKLOADS.

Name Workloads
WL−1 bwaves + Graph500 + lbm + mcf
WL−2 bwaves + lbm + mcf + sphinx3
WL−3 bwaves + lbm + omnetpp + milc
WL−4 GemsFDTD + bwaves + Graph500 + leslie3d
WL−5 GemsFDTD + Graph500 + milc + soplex
WL−6 GemsFDTD + lbm + mcf + libquantum
WL−7 GemsFDTD + leslie3d + omnetpp + soplex
WL−8 Graph500 + leslie3d + libquantum + omnetpp
WL−9 leslie3d + libquantum + soplex + sphinx3
WL−10 libquantum + mcf + milc + sphinx3
WL−11 milc + omnetpp + soplex + sphinx3

of Weighted-IPCs in that Weighted Speedup is only a measure
of system throughput. The equations for Harmonic Mean of
Weighted-IPCs(HMWI), Weighted Speedup (WS), and Unfair-
ness are given below:

HMWI =
N

N−1∑

i=0

IPCalone
i

IPCshared
i

, WS =
N−1∑

i=0

IPCshared
i

IPCalone
i

Unfairness =
MAX(

T shared

0

T alone

0

,
T shared

1

T alone

1

, . . . ,
T shared

N−1

T alone

N−1

)

MIN(
T shared

0

T alone

0

,
T shared

1

T alone

1

, . . . ,
T shared

N−1

T alone

N−1

)

Where N is the number of cores, IPCalone
i is the IPC of

application i running alone on one core in the CMP system
while other cores are idle, IPCshared

i is the IPC of application
i running on one core while other applications are concurrently
running on other cores, T alone

i is the number of cycles it takes
application i to run alone, and T shared

i is the number of cycles
it takes application i to run with other applications.

B. Performance results and analysis

Ideal vs. realized performance: Fig. 10 compares the ide−
alized performance potential of the Duplicon Cache against
actual realized performance. We start with the idealized ex−
periment (iv) in Fig. 3. Recall experiment (iv) allowed any
requests to bank group m to be alternatively serviced by banks
in bank group m+1 (mod 4). Effectively this represents an
idealized Duplicon Cache where

1) there are no cold misses (i.e., everything is already
duplicated)

2) data are duplicated to all banks in the alternate bank group
(i.e., four duplicate copies are available)

3) all rows can be duplicated (i.e., no Demand Activate
Filtering)

4) the Tag Store and Reserved Storage are infinitely sized
5) duplication write requests are free and do not cause

interference
These idealized assumption are removed one by one until we
end up with a realistic Duplicon Cache implementation.

Cold misses are added in experiment (1); now only data
that have been encountered before can be serviced by the
alternate bank group. Introducing cold misses removes some
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Fig. 10. Ideal vs. realized performance improvement.

of the potential, reducing the average potential performance
gain from 20.2% to 17.6%.

Experiment (2) limits the maximum number of duplicates
to 1; now each line of data is assigned to a single bank in
the alternate bank group the first time it is encountered, and
subsequent accesses can only alternatively source the data
from that bank (previously the request can be serviced by
any bank in the alternate bank group). Adding this constraint
had little effect, changing the potential performance gain from
17.6% to 17.1%, which justifies the design choice to limit the
maximum of duplicates to 1 in Section IV−G2.

Note in some cases (WL−1 and WL−2) limiting the max−
imum number of duplicates to 1 actually improved perfor−
mance. This is because sourcing from an alternate bank can
actually reduce row buffer locality in the alternate bank. In
general row buffer locality improves as we limit duplication,
since each requests stays in its home bank and does not
interfere with rows in other banks. However when bank
conflicts do occur the penalty is lower if the data has been
duplicated to another bank.

Experiment (3) considers the effects of Demand Activates
Filtering (Section IV−G). Demand Activates Filtering reduces
the number of useless duplications, but also limits which rows
can be duplicated, decreasing the performance gain potential.
We modeled an infinite sized Tag Store and tracked Demand
Activates for each DRAM row encountered. Recall duplication
is only allowed after the row reaches the the Demand Activates
threshold (Thrsh), so data has to be seen one more time after
the row reaches the threshold before we allow it to be sourced
from the alternate bank group. On average Demand Activates
Filtering reduces the potential from 17.1% to 15.4%. Again
on select workloads (WL−1, WL−2, WL−3) adding Demand
Activates Filtering, which limits duplication, results in better
row buffer locality and can improve the performance.

Experiments (4a), (4b), (4c), and (4d) consider the effect of
sizing the Duplicon Cache from infinite sized to 8GB, 2GB
,512MB, and 128MB. The average performance gain drops
from 15.4% to 15.1%, 14.8%, 14.0%, and 12.0%, respectively,
showing bigger Duplicon Cache sizes can provide additional
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Fig. 11. Performance without Demand Activates Filtering/Usefulness Track−
ing.

gains, but at the cost of both additional main memory and Tag
Store storage.

Up until now we have assumed duplication to be free.
Experiment (5) considers the cost of actually performing
duplication write requests. This drops the performance gain
from 12.0% to 8.3%. 8.3% is the final performance gain
realized after considering all costs and constraints.
Effectiveness of insertion and replacement policy: Dupli−

con employs Demand Activates Filtering (Section IV−G) to
reduce the number of useless duplications, and Usefulness
Tracking (Section IV−H1) to protect useful duplicated lines.
Fig. 11 shows the importance of both mechanisms. (0) is
the performance gain with both mechanisms; (1) is when
Demand Activates Filtering is removed (i.e., the Monitoring
state is removed from the state diagram in Fig. 7); (2) is when
Usefulness Tracking is removed (i.e., the Duplicating-useful
is removed); (3) is when both Demand Activates Filtering and
Usefulness Tracking are removed. The results clearly show
both mechanisms are required: removing Demand Activates
Filtering drops the average performance gain from 8.3%
to 2.1%; removing Usefulness Filtering drops the average
performance gain to −0.9%; removing both drops the average
performance gain to −30.7%. There is synergy between the
two mechanisms − Usefulness Tracking is based on actual
duplication outcome (i.e., something duplicated in this row
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Fig. 12. Performance comparison to baseline with added LLC using different
metrics: (a) Harmonic Mean of Weighted-IPCs, (b) Weighted Speedup, (c)
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was actually later used), whereas Demand Activates Filtering
is heuristics based. We use the heuristics based Demand
Activates Filtering to first determine what might be suitable for
duplication, then use Usefulness Tracking to more rigorously
evaluate if the row should have been duplicated.
Performance comparison to area equivalent baseline: The

Duplicon Cache Tag Store takes up a non−trivial amount of
storage − 284KB in total for our evaluated configuration (see
Section V−C1 for details). This additional storage alternatively
could have been used elsewhere on chip to improve perfor−
mance − by increasing the on−chip Last−Level−Cache (LLC),
for example. Since we evaluated with a 4MB 8−way set−
associative LLC, the smallest increment at which the LLC
can be increased is by an extra way, or 512KB, which is
nearly double the amount of storage we added. Nonetheless we
conservatively compare the Duplicon Cache with a 4MB LLC
(config 0) against the baseline with a 4.5MB LLC (config 1).
We in addition compare against the baseline with a 8MB LLC
(i.e., doubling the LLC) (config 2). In addition to reporting
performance in terms of the Harmonic Mean of Weighted-
IPCs as in the rest of the paper, we also report the Weighted
Speedup and Unfairness. For the Unfairness metric, lower is
better. Fig. 12 shows the comparison.

Duplicon outperforms the baseline with 4.5MB LLC in all
of our workloads and by all metrics. Duplicon also outper−

forms or matches the baseline with 8MB LLC in most cases,
so while Duplicon requires additional on−chip area for the Tag
Store, the extra area cost is well justified.

C. Area/storage/energy results and analysis

1) Tag Store area: The Tag Store is in dedicated SRAM
tables at the memory controller. Each Tag Store entry is made
up four fields: Address Tag, Valid Columns Mask, Demand
Activates Counter, and the Useful bit. The width of each field
is computed below:

1) Address Tag (9 bits) : Fig. 4 shows that there are 9 tag
bits in the 4−way set−associative scheme (d). The 9 bits
are: bits 33 to 27 of the physical address (row bits 15 to
9), and bits 16 and 15 of the physical address (bank bits
1 and 0)

2) Valid Columns Mask (128 bits): as the Duplicon Cache
line size is 8 columns (64B), one valid bit is needed for
every 8 columns; there are 1K columns in each sector, so
128 total valid bits are required

3) Demand Activates Counter (4 bits): we empirically
found 15 to be a good value for the Demand Activates
Counter threshold; thus we use a 4−bit saturating counter

4) Useful Bit (1 bit)
Each Tag Store entry has 9 + 128 + 4 + 1 = 142 bits. Each
Tag Store set has 4 ways, so there are 4 × 142 = 568 bits
per set. Recall we index into a Tag Store set using the non−
channel, non−column index bits. Fig. 4 shows that are 11 such
bits: bits 26 to 18 of the physical address (row bits 8 to 0),
and bits 14 and 13 of the physical address (bank group bits
14 and 13). Thus there are 211 = 2048 sets in each Tag Store,
and 2048 × 568 = 1163264 bits = 142KB per Tag Store table
− i.e., 142 KB/channel (recall we maintain a Tag Store table
per channel). Our configuration has two channels, so the total
storage cost is 2 × 142KB = 284 KB. We believe this is a
non−negligible but acceptable amount of storage to add to the
uncore floorplan, as processor performance is less sensitive to
uncore latencies as opposed to core latencies.
2) DRAM storage: Duplicon incurs 32MB/core of memory

capacity overhead. Normal fluctuation between peak and av−
erage memory utilization of a datacenter already far exceeds
32MB/core, and a reasonably provisioned system will be able
to absorb this additional overhead. In fact, [24] shows current
datacenters only typically use around 40%−50% of memory.
3) Energy: Duplicon introduces extra power in two ways:

(a) Extra leakage from the Tag Store, and extra dynamic
power due to Tag Store accesses

(b) Extra DRAM power from duplication write requests

For (a), we model the Tag Store as a cache in McPAT, model
read and write accesses to the Tag Store as read and write
accesses to the cache, and add the power/energy contribution
from the cache to the total power/energy. For (b), we account
for the duplication write requests in our CACTI DRAM power
and energy model.

Fig. 13 shows the energy results. Duplicon reduces the total
energy on 9 out of 11 workloads, reducing the total energy by
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Fig. 13. Duplicon Cache Energy evaluation.

5.6% on average. The energy savings come from reducing the
workload execution time.

VI. RELATED WORK

While the general principle of duplicating data for reliability
or performance (e.g., RAID) is well established, we are not
aware of any prior work that specifically duplicates data in
DRAM to reduce bank conflicts.

Data duplication in DRAM was proposed in RowClone
[25]. Duplicon differs significantly from RowClone in that data
duplication in RowClone is performed as part of the program
−to, for example, clear an array by copying the zero page to it.
Duplication in RowClone is architecturally visible and under
explicit software control via special memcopy instructions. In
contrast, Duplicon Cache duplication is performed for perfor−
mance reasons, and is completely transparent to software.

Several work reduced memory latency by modifying DRAM
to create fast and slow regions, then mapping hot data to the
fast regions. Tiered−Latency DRAM [26] partitioned subarrays
using isolation transistors into fast rows and slow rows, then
cached hot data in the fast rows. CHARM [27] created fast
subarrays with high aspect−ratios, then mapped hot pages
to them. Dynamic Asymmetric−Subarray DRAM [28] and
LISA [29] built upon Tiered−Latency DRAM and CHARM by
proposing better mechanisms to move data between adjacent
subarrays, either for bulk data transfers or to migrate data
between fast and slow subarrays. LISA can also be used to
reduce precharge latency. Multiple clone row DRAM [30]
reduced access latency by using multiple physical rows to
store a single logical row, increasing the number of sensed
cells and reducing the sensing latency. However, in all these
schemes conflicting requests to the same bank still need to
be processed serially, although the queuing delay can be
reduced if the conflicting requests hit in the fast region. In
contrast, Duplicon allows conflicting requests to be serviced
concurrently in different banks. In addition, all these schemes
require changing commodity DRAM, while Duplicon does
not.

Micron’s Reduced Latency DRAM (RLDRAM) [31] and
Fujitsu’s FCRAM [32] reduced the number of cells per bitline.
MoSys’ 1T−SRAM is a high density SRAM with much faster
access latency than DRAM [33]. Numerous work also exam−
ined adding an SRAM cache to DRAM [34]–[40] However,
these approaches have much higher cost−per−bit compared to
commodity DRAM and cannot be used as the main memory

storage in a large system, whereas Duplicon Cache is built on
commodity DRAM.

Liu et al. proposed reducing bank conflicts via OS−level
bank partitioning [41]. This approach is problematic because
there are not enough banks per thread to allow total isolation;
Liu et al. stated 8−16 banks are needed per thread to achieve
good performance, yet we show in Section V−A a state−of−the−
art processor which supports 56 threads, 6 memory channels,
and 4 ranks per channel (e.g., Intel Xeon Processor E7−8894
v4 [11]) has a banks/thread ratio of 6.86, which is short of the
8−16 banks required. Furthermore, the bank group/thread ratio
is only 1.71, less than 2 bank groups per thread, guaranteeing
some threads will experience bank group conflicts.

Other work [42]–[44] improve performance by improving
the physical address to bank mapping, but if there are not
enough banks/thread in the system (which we show in the
paragraph above), then bank conflicts will occur even with an
ideal mapping. DReAM [44] altered the mapping dynamically
based on run−time feedback. This approach is problematic be−
cause data elements become out of place after the mapping is
altered, and relocating all data elements to their new locations
is expensive both in terms of performance and energy.

BLP−Aware Prefetch Issue (BAPI) increased bank−level par−
allelism by prioritizing prefetches that go to different banks
[45]. Our baseline implementation effectively already imple−
ments BAPI, as we allow prefetches requests to be serviced
out−of−order as they become ready. SALP [46] reduced the
bank conflict penalty by allowing some operations to the same
bank to overlap if they are to different subarrays. However,
SALP requires changes to DRAM, while Duplicon does not.

Guo et al. duplicated data across different ranks of the
same channel and sourced data from an alternate rank if the
original rank is being refreshed [47], but did not propose using
duplication to reduce bank conflicts.

VII. CONCLUSION

DRAM bank and bank group conflicts significantly degrade
program performance. The Duplicon Cache is an effective
technique to mitigate bank and bank group conflict penalties
by identifying and duplicating select data across multiple bank
groups. Duplicon is built on top of existing commodity DRAM
and does not require changes to DRAM. The key parts of
Duplicon are: 1) a set−associative and sectored architecture
that allows for efficient tracking of duplicated data, 2) Demand
Activates Filtering to identify which DRAM rows to duplicate,
and 3) Usefulness Tracking and Probabilistic Replacement to
protect useful data from being overwritten, while allowing
stale data to be replaced. Our evaluation shows Duplicon
improves performance by 8.3% while reducing energy by 5.6%
on average.
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