
Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin

{onur,hyesoon,dna,patt}@ece.utexas.edu

ABSTRACT
High-performance out-of-order processors spend a signifi-
cant portion of their execution time on the incorrect pro-
gram path even though they employ aggressive branch pre-
diction algorithms. Although memory references generated
on the wrong path do not change the architectural state of
the processor, they can affect the arrangement of data in
the memory hierarchy. This paper examines the effects of
wrong-path memory references on processor performance.
It is shown that these references significantly affect the IPC
(Instructions Per Cycle) performance of a processor. Not
modeling them can lead to errors of up to 10% in IPC es-
timates for the SPEC2000 integer benchmarks; 7 out of 12
benchmarks experience an error of greater than 2% in IPC
estimates. In general, the error in the IPC increases with
increasing memory latency and instruction window size.
We find that wrong-path references are usually beneficial

for performance, because they prefetch data that will be
used by later correct-path references. L2 cache pollution is
found to be the most significant negative effect of wrong-
path references. Code examples are shown to provide in-
sights into how wrong-path references affect performance.

1. INTRODUCTION
High-performance processors employ aggressive branch pre-

diction techniques in order to exploit high levels of instruction-
level parallelism. Unfortunately, even with low branch mis-
prediction rates, these processors spend a significant num-
ber of cycles fetching instructions from the mispredicted
(i.e. wrong) program path. The leftmost bar in Figure 1
shows the percentage of total cycles spent fetching wrong-
path instructions in the SPEC2000 integer benchmarks. The
middle and rightmost bars of Figure 1 show the percentage
of instructions fetched and executed on the wrong path1.
On average, even with a 4.2% conditional branch mispre-
diction rate, the evaluated processor spends 47% of its total
cycles fetching wrong-path instructions. 53% of all fetched
instructions and 17% of all executed instructions are on the
wrong path. 6% of all executed instructions are wrong-path
data memory access instructions (loads and stores).
Although wrong-path data and instruction memory refer-

ences do not change the architectural state of the machine,
they can affect the arrangement of data in the memory hi-
erarchy. In this paper, we examine the effect of wrong-path
memory references on the performance of a processor. In

1Machine configuration and simulation methodology are de-
scribed in Section 2.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

P
er

ce
nt

ag
e

(%
)

% (cycles on wrong path / total cycles)
% (fetched wrong path insts / all fetched insts)
% (exec wrong path non-mem insts / all exec insts)
% (exec wrong path mem insts / all exec insts)

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 1: Percentage of total cycles spent on the
wrong path, percentage of instructions fetched on
the wrong path, and percentage of instructions
(memory and non-memory) executed on the wrong
path in the baseline processor for SPEC 2000 integer
benchmarks.

particular, we seek answers to the following questions:

1. How important is it to correctly model wrong-path
memory references? What is the error in the predicted
performance if wrong-path references are not modeled?

2. Do wrong-path memory references affect performance
positively or negatively? What is the relative signifi-
cance on performance of prefetching, bandwidth con-
sumption, and pollution caused by wrong-path refer-
ences?

3. What kind of code structures lead to the positive ef-
fects of wrong-path memory references?

Our results indicate that wrong-path memory references
significantly affect processor performance and not modeling
them may lead to errors of up to 10% in IPC estimates. Al-
though they have a positive effect on performance for most
of the benchmarks due to prefetching, wrong path references
negatively impact performance for a few others. We analyze
the causes for the positive and negative performance im-
pact. We identify pollution in the L2 cache as the dominant
negative effect of wrong-path references and present code
examples to illustrate the prefetching effects.

2. EXPERIMENTAL METHODOLOGY
We use an execution-driven simulator capable of accu-

rately fetching and executing instructions on the wrong path

1

and correctly recovering from mispredictions that occur on
the wrong path. The baseline processor we model is an 8-
wide out-of-order processor with an instruction window that
can hold 128 instructions. The conditional branch predic-
tor is a hybrid branch predictor composed of a 64K-entry
gshare [5] and a 64K-entry PAs [9] predictor with a 64K-
entry selector along with a 4K-entry branch target buffer.
The indirect branch predictor is a 64K-entry, 4-way target
cache [4]. We model a deep pipeline with a 20-cycle branch
misprediction latency. The data and instruction caches are
64KB, 4-way with 8 banks and a 2-cycle hit latency. The
unified L2 cache is 1MB, 8-way with 8 banks and a 10-cycle
hit latency. All caches have a line size of 64 bytes. We model
bandwidth, port contention, bank conflicts, and queuing ef-
fects at all levels in the memory hierarchy.
The memory system we model is shown in Figure 2. At

most 128 I-Cache and D-Cache requests may be outstand-
ing. These requests may reside in any of the four queues
in the memory system. Two of these queues, L2 Request
Queue and Bus Request Queue are priority queues where
requests generated by older instructions have higher prior-
ity. Such prioritization is fairly easy to implement on-chip
and reduces the probability of a full window stall by ser-
vicing older instructions’ requests earlier. Memory Queue
and L2 Fill Queue are modeled as FIFO queues. The bus is
pipelined, split-transaction, 256-bit wide, and has a one-way
latency of 100 processor cycles. At most two requests can
be scheduled onto the bus every bus cycle, one from the Bus
Request Queue and one from the Memory Queue. Proces-
sor frequency is four times the bus frequency. We model 32
DRAM banks, each with an access latency of 300 processor
cycles. Hence, the round-trip latency of an L2 miss request
is a minimum of 500 processor cycles (300-cycle memory ac-
cess + 200-cycle round-trip on the bus) without any queu-
ing delays and bank conflicts. On an L2 cache miss, the
requested cache line is brought into both the L2 cache and
the first-level cache that initiated the request. A store in-
struction request that misses the data cache or the L2 cache
allocates a line in the respective cache. Write-back requests
from D-Cache are inserted into the L2 Request Queue and
write-back requests from the L2 Cache are inserted into the
Bus Request Queue as bandwidth becomes available from
instruction and data fetch requests.
The experiments were run using the 12 SPEC2000 inte-

ger benchmarks compiled for the Alpha ISA with the -fast
optimizations and profiling feedback enabled. The bench-
marks were run to completion with a modified test input
set to reduce simulation time. The number of retired in-
structions along with branch misprediction and cache miss
rates per 1000 instructions for each benchmark are shown
in Table 1.

3. WRONG PATH: TO MODEL OR NOT TO
MODEL

In this section, we measure the error in IPC if wrong-path
memory references are not simulated. We also evaluate the
overall effect of wrong-path memory references on the IPC
(retired Instructions Per Cycle) performance of a proces-
sor. We investigate how the effects of wrong-path references
change with memory latency and instruction window size.
In order to isolate the effects of wrong-path memory refer-
ences, we ensure that wrong-path execution can only affect

D−Cache

Bus Request Queue

Memory Queue

DRAM Memory Banks

I−Cache

I−Cache
misses

L2 Request Queue

L2 Fill Queue

L2 Cache

Bus

D−Cache misses and

D−Cache Fill

On−Chip

Off−Chip

I−Cache Fill

L2−Cache Fill

L2 misses and

write backs

write backs

Figure 2: Memory system modeled for evaluation.

the execution on the correct path through changes in the
memory system. All other state that is updated specula-
tively during wrong-path execution is restored upon recov-
ery from misprediction.
Figure 3 shows, for reference, the IPC performance of the

baseline processor for three different minimum memory la-
tencies (250, 500, and 1000 cycles) when wrong-path mem-
ory references are correctly modeled. Figure 4 shows the
percent error in IPC for the same three models when wrong-
path memory references are not modeled at all2. A positive
error means that the IPC obtained when wrong-path refer-
ences are not modeled is higher than the IPC obtained when
they are modeled (i.e. a positive error implies wrong-path
references are detrimental to performance)3.
Figure 4 shows that error in IPC estimates can be quite

significant for some benchmarks if wrong-path memory ref-
erences are not modeled. For instance, the IPC obtained
for mcf without wrong-path references is 8% lower than the
IPC obtained with wrong-path references, for a 250-cycle
memory latency. Error in the average IPC4 can be as much
as 3.5% for a 1000-cycle memory latency. Error in IPC gen-
erally increases as memory latency increases, which suggests
that modeling wrong-path references will be even more im-

2Not modeling the wrong-path memory references is ac-
complished by stalling the fetch stage until a mispredicted
branch is resolved and machine state is recovered.
3In effect, Figure 4 shows the difference in IPC when trace-
driven simulation is used instead of the baseline execution-
driven simulation.
4Rightmost set of bars in Figure 4 shows the error in the
average IPC, not the average of the error.

2

Inst. BP misp L2 miss DC miss IC miss

Benchmark count rate rate rate rate

gzip 366 M 5.89 0.28 5.20 0.00

vpr 567 M 11.65 0.42 10.90 0.00

gcc 218 M 9.84 0.46 1.95 2.46

mcf 173 M 13.31 28.86 53.62 0.00

crafty 498 M 5.18 0.12 1.65 0.92

parser 412 M 8.89 0.87 5.48 0.08

eon 129 M 1.15 0.05 0.03 0.09

perlbmk 99 M 3.27 0.11 3.06 4.35

gap 404 M 1.46 4.64 4.76 0.03

vortex 165 M 1.42 3.47 5.60 2.01

bzip2 418 M 8.05 1.53 5.80 0.00

twolf 279 M 8.87 0.02 0.09 0.04

Table 1: The number of retired instructions, branch
misprediction rate, and L2, D-Cache (DC), I-Cache
(IC) miss rates per 1000 retired instructions on the
baseline processor for the simulated benchmarks.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

In
st

ru
ct

io
ns

 p
er

 C
yc

le

250-cycle memory latency
500-cycle memory latency
1000-cycle memory latency

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 3: IPC of the baseline processor for three dif-
ferent memory latencies when wrong-path accesses
are correctly modeled.

portant in future processors with longer latencies to memory.
This is because, with increased memory latencies, the posi-
tive and negative effects of wrong-path memory operations
become more pronounced in terms of their contribution to
execution cycles. For instance, a wrong-path reference that
generates a memory request that is later used by a correct-
path reference, and thus saves 1000 cycles, affects the IPC
more than one which saves only 250 cycles. Mcf, where error
decreases as memory latency increases, is an exception. In
this benchmark, long-latency cache misses caused by wrong-
path references delay the servicing of correct-path misses by
consuming bandwidth and resources. This bandwidth con-
tention becomes more significant at longer memory laten-
cies, therefore performance improvement due to wrong-path
references reduces with increased memory latency.
Figure 4 also shows that wrong-path references have a

positive effect on overall processor performance for many of
the benchmarks, especially for mcf, parser, and perlbmk.
The only benchmarks where wrong-path references have a
significant negative affect on IPC are vpr and gcc.
Figure 5 shows that the percentage (and therefore, the

number5) of executed wrong-path instructions does not sig-
nificantly increase with increased memory latency. This is
due to the limited instruction window size of 128. When the
processor remains on the wrong path for hundreds of cycles

5Because the number of executed correct-path instructions
is always constant for a benchmark.

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

P
er

ce
nt

 I
P

C
 E

rr
or

 (
%

)

250-cycle memory latency
500-cycle memory latency
1000-cycle memory latency

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 4: Error in the IPC of the baseline processor
for three different memory latencies if wrong-path
memory references are not simulated.

due to a mispredicted branch dependent on an L2 cache
miss, the processor incurs a full window stall due to its lim-
ited window size. Hence, increasing the memory latency
does not increase the number of executed wrong-path in-
structions. However, increasing the memory latency does in-
crease the contribution wrong-path memory references make
to the number of execution cycles, as explained above. To
determine the effect of increased number of wrong-path in-
structions on performance estimates, we next evaluate pro-
cessors with larger instruction windows that allow the exe-
cution of more instructions on the wrong path.

0

5

10

15

20

25

30

35

40

45

%
 o

f
w

ro
ng

-p
at

h
in

st
s

ou
t

of
 a

ll
ex

ec
ut

ed
 in

st
s

250-cycle memory latency (non-memory inst)
250-cycle memory latency (memory inst)
500-cycle memory latency (non-memory inst)
500-cycle memory latency (memory inst)
1000-cycle memory latency (non-memory inst)
1000-cycle memory latency (memory inst)

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 5: Percentage of executed wrong-path in-
structions out of all executed instructions for three
different memory latencies.

3.1 Effect of Wrong-Path Memory References
in Larger Instruction Windows

Future processors will have larger instruction windows to
exploit even higher levels of instruction-level parallelism. A
larger instruction window would change the effect of wrong-
path memory references on performance in two major ways:

1. A larger window allows more wrong-path references to
be executed by decreasing the number of full window
stalls encountered on the wrong path. If references
that occur later on the wrong path have positive ef-
fects, such as prefetching, a larger window could in-
crease the positive impact of wrong-path references on
IPC. On the other hand, if later wrong-path references

3

have negative effects, such as pollution, IPC could be
negatively affected.

2. With a larger window, the processor is better able
to tolerate the negative effects caused by wrong-path
memory references.

Figure 6 shows the error in IPC estimates for processors
with three different instruction window sizes, when wrong-
path memory references are not modeled6. Error in IPC is
almost 10% in mcf for a window size of 512. Aside from a
couple of exceptions, notably perlbmk and gcc, error in IPC
generally increases with increasing window size if wrong-
path memory references are not modeled. With a larger
instruction window the processor is able to execute more
memory operations on the wrong path as shown in Figure 7,
which changes the impact of wrong-path memory references
on IPC.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

P
er

ce
nt

 I
P

C
 E

rr
or

 (
%

)

128-entry window
256-entry window
512-entry window

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 6: Error in the IPC of the baseline processor
for three different instruction window sizes if wrong-
path memory references are not simulated.

How the increase in the number of executed wrong-path
references affects IPC depends on the usefulness of the ex-
tra references executed. In perlbmk, memory references ex-
ecuted further down on the wrong path start canceling out
the positive prefetching effects of the operations executed
earlier. Therefore, with a larger instruction window, wrong-
path memory references have a less positive effect on IPC
in perlbmk. On the other hand, we see the opposite effect
in vpr, mcf, parser, vortex, and bzip2. Wrong-path refer-
ences executed further down on the wrong path are useful
for correct-path operations encountered after the processor
resolves the mispredicted branch for these five benchmarks.

4. ANALYSIS
Wrong-path memory references affect processor perfor-

mance significantly. Therefore, it is important to under-
stand why that is the case. In this section, we analyze the
reasons behind the positive or negative impact that wrong-
path references have on performance.

4.1 Bandwidth and Resource Contention
Wrong-path references can use bandwidth and resources

and thus get in the way of correct-path references by de-
laying the servicing of correct-path memory requests. To
examine how much the bandwidth and resource contention
caused by wrong-path references affects IPC, we simulated

6Memory latency is fixed at 500 cycles for these simulations.

0

5

10

15

20

25

30

35

40

45

%
 o

f
w

ro
ng

-p
at

h
in

st
s

ou
t

of
 a

ll
ex

ec
ut

ed
 in

st
s

128-entry inst window (non-memory inst)
128-entry inst window (memory inst)
256-entry inst window (non-memory inst)
256-entry inst window (memory inst)
512-entry inst window (non-memory inst)
512-entry inst window (memory inst)

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 7: Percentage of executed wrong-path in-
structions out of all executed instructions three dif-
ferent instruction window sizes.

an idealized unrealistic processor which always gives lower
priority to wrong-path references everywhere in the memory
system. In this model, wrong-path references never get in
the way if there are correct-path references outstanding. If
a resource, such as a queue entry, is tied up by a wrong-
path reference and a correct-path reference needs that re-
source, the model allocates the resource to the correct-path
reference. We compared the performance of this idealized
model to the baseline processor. We found that the perfor-
mance difference between the two models is negligible for all
benchmarks except mcf, whose IPC improves by 2.6% with
the idealized model. Mcf, a benchmark with a very high L2
miss rate, generates many wrong-path references that miss
in the L2 cache. These references keep the memory banks
busy and delay the correct-path references that later try to
access the same banks. In other benchmarks wrong-path
references do not cause significant bandwidth and resource
contention for correct-path references.

4.2 Usefulness of Wrong-path References
Wrong-path references can increase performance by prefetch-

ing data or reduce performance by polluting the caches. We
explain the impact of these effects on performance by ex-
amining the accuracy of wrong-path data and instruction
references. We categorize the misses caused by wrong-path
references in three groups:

1. Unused wrong-path miss: caused by a wrong-path ref-
erence, but the allocated cache line is never used by
a correct-path reference or it is evicted before being
used.

2. Fully-used wrong-path miss: caused by a wrong-path
reference and the allocated cache line is later used by
a correct-path reference.

3. Partially-used wrong-path miss: initiated by a wrong-
path reference and later required by a correct-path ref-
erence while the request is in flight.

Figure 8 shows the number of data cache misses for two
processor models. The leftmost stacked bar for each bench-
mark shows the number of data cache misses for the baseline
model that executes wrong-path memory references. The
rightmost bar shows the number of data cache misses for a

4

simulator that does not model wrong-path references. We
show the raw number of misses in this figure to illustrate
the impact data cache misses can have on performance. We
observe that the number of correct-path data cache misses
are reduced by 13% on average when wrong-path references
are modeled correctly, which hints at why most benchmarks
benefit from wrong-path references. This reduction is most
significant in vpr (30%) and mcf (26%). In mcf, this reduc-
tion affects the IPC positively (as was shown in Figure 4)
because most (90%) of the wrong-path data cache misses
are fully or partially used. Wrong-path data cache misses
that also miss in the L2 cache provide very accurate long-
latency prefetches in mcf, and this positively impacts the
IPC. However, in vpr, many unused wrong-path data cache
misses cause significant pollution in the L2 cache, as we show
in section 4.3. Therefore, vpr’s performance is adversely af-
fected by wrong-path data references. On average, 76% of
the wrong-path data cache misses are fully or partially used.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

N
u

m
b

er
 o

f
d

at
a

ca
ch

e
m

is
se

s

vpr mcf
0

500000

1000000

1500000

2000000

2500000

3000000
Unused wrong-path miss
Used wrong-path miss
Partially-used wrong-path miss
Correct-path miss
Correct-path miss (no wrongpath sim)

gzip gcc crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 8: Number of data cache misses for the base-
line (leftmost bar for each benchmark) and a model
that does not execute wrong-path references (right-
most bar for each benchmark). Note that the y-axis
for vpr and mcf is on a different scale due to the
large number of misses they experience.

Figure 9 shows the number of instruction cache misses
for the same two processor models. We observe that only
gcc, crafty, perlbmk, and vortex can be affected by wrong-
path instruction references, because only these benchmarks
incur a significant number of instruction cache misses. The
accuracy of wrong-path instruction requests is lower than
that of wrong-path data requests. On average, 69% of the
wrong-path instruction cache misses are fully or partially
used. Only 60% of wrong-path instruction cache misses are
fully or partially used in gcc and the pollution caused by the
other 40%, which are unused, is the reason why gcc loses
performance due to wrong-path references. On the other
hand, used wrong-path instruction cache misses in perlbmk
and vortex provide significant performance increase.
We find that, in gcc, many unused instruction cache misses

also miss in the L2 cache and evict useful L2 cache lines.
Since L2 cache miss latency is very high, these unused wrong-
path misses decrease performance significantly. In contrast,
in crafty, which also has a large number of unused wrong-
path instruction cache misses, most of these misses are sat-
isfied in the L2 cache. Therefore, these misses do not evict
useful lines from the L2, they only cause pollution in the in-
struction cache. That’s why the IPC of crafty is not signifi-
cantly reduced due to unused wrong-path references, as was
shown in Figure 4. Unused wrong-path instruction cache
misses do not cause significant pollution in perlbmk, as we

show in section 4.3. The prefetching benefit of used wrong-
path instruction cache misses outweighs the pollution caused
by unused ones in vortex. Hence the performance increase
in these two benchmarks.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

N
um

be
r

of
 in

st
ru

ct
io

n
ca

ch
e

m
is

se
s

Unused wrong-path miss
Fully-used wrong-path miss
Partially-used wrong-path miss
Correct-path miss
Correct-path miss (no wrong-path simulation)

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 9: Number of instruction cache misses for
the baseline (leftmost bars) and a model that does
not execute wrong-path references (rightmost bars).

4.3 Understanding the Pollution Effects
In order to understand the performance impact of cache

pollution caused by wrong-path references, we eliminate wrong-
path pollution from the three caches. We hypothesize that
pollution caused by wrong-path references in the first-level
instruction and data caches would be less detrimental to
performance than pollution in the L2 cache, due to the very
high miss penalty of the L2 cache. We evaluate four differ-
ent idealized models to test this hypothesis: three models in
which wrong-path requests do not cause pollution in I-cache,
D-cache, and L2 cache, respectively; and a model in which
wrong-path requests do not cause pollution in any of the
caches7. We model “no pollution” by storing lines fetched
by wrong-path references in a separate buffer rather than
the respective cache and moving those lines to the respec-
tive cache only when they are used by a correct-path request.
These models are idealized because a real processor does not
know whether or not a reference is a wrong-path reference
until the mispredicted branch is resolved.
Figure 10 shows the IPC improvement over baseline of

these four idealized models. Eliminating the pollution caused
by wrong-path references from the first-level instruction and
data caches does not affect performance except in crafty and
vortex. In contrast, eliminating the pollution in the L2 cache
increases performance for half of the benchmarks, including
gcc and vpr where wrong-path references are detrimental for
overall performance. In gcc, eliminating L2 cache pollution
increases the baseline performance by 10% and thus makes
wrong-path references beneficial for overall performance. In
mcf and parser, eliminating L2 cache pollution increases IPC
by 6% and 4.5% respectively, further increasing the useful-
ness of wrong-path references in these benchmarks.
We investigate whether pollution in the first-level caches

has a more pronounced effect on IPC when using smaller
first-level caches. Figure 11 shows the IPC improvement of
the four idealized models when 16KB instruction and data

7We also examined a model where wrong-path requests do
not cause pollution in both the I-cache and the D-cache, but
cause pollution in the L2 cache. The results obtained using
this model were negligibly different from the results obtained
using the model which eliminates only I-cache pollution.

5

caches are used. We can see that pollution in especially the
instruction cache becomes more significant for performance
with smaller instruction and data caches. Data cache pol-
lution is still not significant, because the relatively short-
latency misses it causes are tolerated by the 128-entry in-
struction window. Instruction cache pollution due to wrong-
path prefetches affects performance significantly in gcc, crafty,
perlbmk, vortex, and twolf, four of which have significant
numbers of unused wrong-path instruction cache misses (shown
in Figure 9). However, even with smaller first-level caches,
removing pollution in the L2 cache is more important than
removing pollution in either of the first-level caches.

0

1

2

3

4

5

6

7

8

9

10

11

12

 P
er

ce
nt

 I
P

C
 im

pr
ov

em
en

t
ov

er
 b

as
el

in
e

(%
)

No I-cache pollution
No D-cache pollution
No L2 cache pollution
No pollution in any cache

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 10: IPC improvement over the baseline pro-
cessor if pollution caused by wrong-path references
is eliminated from caches.

0

1

2

3

4

5

6

7

8

9

10

11

P
er

ce
nt

 I
P

C
 im

pr
ov

em
en

t
ov

er
 b

as
el

in
e

(%
)

No I-cache pollution
No D-cache pollution
No L2 cache pollution
No pollution in any cache

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 11: IPC improvement over the baseline pro-
cessor with 16KB instruction and data caches if pol-
lution caused by wrong-path references is eliminated
from caches.

Figure 12, which shows the normalized number of L2 cache
misses in the baseline model and a model that does not sim-
ulate wrong-path references, provides insight into why L2
cache pollution degrades performance in vpr and gcc when
wrong-path references are modeled. For these two bench-
marks, the number of L2 cache misses suffered by correct-
path instructions (correct-path miss + partially-used wrong-
path miss in Figure 12) increases significantly when wrong-
path references are modeled, due to the pollution caused by
unused wrong-path L2 cache misses. On the other hand, the
number of L2 cache misses suffered by correct-path instruc-
tions either decreases or stays the same for other bench-
marks when wrong-path references are modeled, which ex-
plains why wrong-path references are beneficial for the per-
formance of most benchmarks.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

N
or

m
al

iz
ed

 n
um

be
r

of
 L

2
ca

ch
e

m
is

se
s

Unused wrong-path miss
Fully-used wrong-path miss
Partially-used wrong-path miss
Correct-path miss
Correct-path miss (no wrong-path simulation)

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 12: Normalized number of L2 cache misses
for the baseline (leftmost bars) and a model that
does not execute wrong-path references (rightmost
bars).

We conclude that pollution in the L2 cache is the most
significant negative effect of wrong-path memory references.
In order to reduce the negative impact of wrong-path refer-
ences or to increase their positive effects, high-performance
processors should adopt policies to reduce the L2 cache pol-
lution caused by wrong-path references.

4.4 Understanding the Prefetching Effects
Previous sections have shown that, in general, the prefetch-

ing benefits of wrong-path references outweigh their negative
effects, such as bandwidth demands or cache pollution. In
this section we present code examples to provide insights
into why wrong-path memory references can be beneficial
for correct-path execution.

4.4.1 Prefetching Data for Later Loop Iterations
We find that wrong-path execution of a loop iteration can

prefetch data for the correct-path execution of the same it-
eration. This can happen when a conditional branch inside
the loop is mispredicted and the processor continues to ex-
ecute the next iteration(s) on the wrong path. Our analysis
shows that most of the useful wrong-path data cache misses
in mcf and bzip2 are generated in this fashion.
Figure 13 shows a code section from mcf’s primal bea mpp

function, which performs an optimization routine. The shown
for loop traverses an array of pointers to arc t structures
and performs operations on a single arc t structure in each
iteration. The branch in line 4 is dependent on the pointer
load arc->ident, and is mispredicted 30% of the time. In
some iterations the processor mispredicts this branch and
does not execute the body of the if statement and starts
executing the next iteration on the wrong path. This wrong-
path execution of the next iteration initiates a load request
for the next arc->ident. When the mispredicted branch
is resolved, the processor recovers, executes the body of
the if statement and starts the next iteration on the cor-
rect path. Back on the correct path, the processor gener-
ates a load request for arc->ident, which has already been
prefetched into the data cache by the previous execution of
this iteration on the wrong path. We find that the load of
arc->ident frequently misses the data cache and sometimes
the L2 cache. Therefore, the wrong-path execution of later

6

iterations of this for loop prefetches data that will later be
used by the correct-path execution of the same iterations.
The instruction that loads arc->ident causes 63% of the
wrong-path data cache misses in mcf and 99% of these are
fully or partially used by later correct-path references. In
this example, because the body of the if statement con-
tains a lot of instructions, not executing the body of the
if statement in the iterations executed on the wrong path
parallelizes the misses caused by the load of arc->ident in
different iterations. The parallelization of these misses may
not be achieved if the processor remains on the correct path
and correct path requires the execution of the body of the
if statement in each iteration, because the instruction win-
dow would be filled with instructions in the body of the if

statement instead of instructions that load arc->ident.

1 : arc_t *arc; // array of arc_t structures
2 : // initialize arc (arc = ...)
3 :
4 : for (; arc < stop_arcs; arc += size) {
5 : if (arc->ident > 0) { // frequently mispredicted branch
6 : // function calls and
7 : // operations on the structure pointed to by arc
8 : // ...
9 : }
10: }

Figure 13: An example from mcf showing wrong-
path prefetching for later loop iterations.

4.4.2 One Loop Prefetching for Another
Although less common and less accurate than wrong-path

prefetching within iterations of the same loop, two different
loops can prefetch data for each other if they are both work-
ing on the same data structure.
Figure 14 shows a code example from mcf, a sorting rou-

tine which exhibits wrong-path prefetching behavior. The
two while loops in lines 5 and 7 traverse an array of pointers
to structures, perm, and compare a member of each structure
to the value cut. It is important to note that the first traver-
sal begins from a lower memory address and works up, while
the second traversal begins at a higher memory address and
works down. Both while loops branch based on a data-
dependent condition. We find that when the first while loop
mispredicts its branch-terminating condition and continues
executing loop iterations, its accesses to perm[l]->abs cost

continue to load data from the upper part of the perm array
and, in the process, serve to prefetch data elements for the
second while loop.

4.4.3 Prefetching in Control-Flow Hammocks
If a hammock branch is mispredicted, the loads executed

on the mispredicted path in the hammock may provide use-
ful data for the loads that are later executed on the correct
path in the hammock. This happens if both paths of the
hammock need the same data.
The while loop from mcf benchmark’s refresh potential

function, shown in Figure 15, demonstrates this kind of
wrong-path prefetching. This function traverses a linked
data structure. Depending on the orientation of the node

visited, a potential is calculated for the node. Note that
the values used to calculate the potential are the same re-
gardless of the orientation of the node. In other words, in-
structions in the if block and instructions in the else block

1 : l = min; r = max;
2 : cut = perm[(long)((l+r) / 2)]->abs_cost;
3 :
4 : do {
5 : while(perm[l]->abs_cost > cut)
6 : l++;
7 : while(cut > perm[r]->abs_cost)
8 : r--;
9 :
10: if(l < r) {
11: xchange = perm[l];
12: perm[l] = perm[r];
13: perm[r] = xchange;
14: }
15: if(l <= r) {
16: l++; r--;
17: }
18: } while(l <= r);

Figure 14: An example from mcf showing prefetch-
ing between different loops.

use the same data. Therefore, if the branch of the if state-
ment is mispredicted, wrong-path load instructions will gen-
erate requests for node->basic arc->cost and node->pred->

potential. Once the mispredicted branch is resolved, correct-
path load instructions will generate requests for the same
data, which would already be in the cache or in flight. Our
analysis shows that wrong-path cache misses caused by the
if block and the else block of this hammock constitute 6%
of the wrong-path data cache misses in mcf and more than
99% of them are fully or partially used by instructions on
the correct path.

1 : node_t *node;
2 : // initialize node
3 : // ...
4 :
5 : while (node) {
6 :
7 : if (node->orientation == UP) { // mispredicted branch
8 : node->potential = node->basic_arc->cost
9 : + node->pred->potential;
10: } else { /* == DOWN */
11: node->potential = node->pred->potential
12: - node->basic_arc->cost;
13: // ...
14: }
15:
16: node = node->child;
17: }

Figure 15: An example from mcf showing prefetch-
ing in control-flow hammocks.

5. RELATED WORK
Butler compares the performance of trace-driven versus

execution-driven simulation for the SPEC89 integer bench-
marks on a machine with a 10-cycle memory latency [3].
Butler shows that in general, execution-driven simulation
performs worse than trace-driven simulation and the main
reason for this is pollution of the branch prediction struc-
tures. However, a performance improvement is observed on
one benchmark, gcc, when the instruction and data caches
are speculatively updated, but the branch prediction struc-
tures are not speculatively updated. We confirm the re-
sult that speculative memory references can improve per-
formance and find that the beneficial effects are even more

7

pronounced with longer memory latencies.
Moudgill et al. investigate the effect wrong-path memory

accesses have on IPC and data cache miss rates [6]. Their
objective is to determine whether, in light of speculative ex-
ecution, trace-driven simulators can accurately inform the
design decisions made during processor development. They
compare the IPC of a processor running the SPEC95 in-
teger benchmarks with and without wrong path memory
accesses; their memory latency is 40 cycles. They find that
the IPC difference is negligible in all but one case (an un-
explained outlier with a difference of 4% in IPC occurs for
the benchmark compress). We show that processor perfor-
mance is less sensitive to wrong-path memory accesses when
using low memory latencies, hence the negligible differences
in IPC reported by Moudgill et al.
Pierce and Mudge study the effect of wrong-path memory

references on cache hit rates [7]. They develop a tool used
to simulate wrong-path memory accesses and use this tool
to show that wrong-path memory accesses allocate useful
data and instruction cache blocks 50% of the time on the
SPEC92 C benchmarks.
Pierce and Mudge introduce an instruction cache prefetch-

ing mechanism, which leverages the usefulness of wrong-path
memory references to the instruction cache [8]. Their mech-
anism fetches both the fall-through and target addresses of
conditional branch instructions, i.e., they prefetch both the
correct-path and wrong-path instructions. They find that
wrong-path prefetching improves performance by up to 4%
over a next-line prefetching mechanism. Pierce and Mudge
observe that the effectiveness of wrong-path prefetching in-
creases as the memory latency is increased.
Bahar and Albera investigate a method of capturing the

beneficial aspects of speculative memory references while
avoiding the pollution effects of wrong-path memory ac-
cesses [1]. They assume a priori that wrong-path references
degrade performance. They use a branch confidence predic-
tor to indicate when the processor is likely on the wrong path
in which case, the results of all memory accesses are placed
into a separate fully-associative 16-entry buffer. A maxi-
mum performance improvement of 3.4% is observed when
the results of all wrong-path references are stored in the
separate buffer. However this performance improvement is
due primarily to the additional associativity provided by the
separate buffer. We refute Bahar and Albera’s assumption
that wrong-path references always degrade performance and
show that wrong-path references do benefit performance in
many cases.
Bhargava et al. observe that the major disadvantage of

trace-driven simulation is its inability to model the fetch
and execution of speculative instructions [2]. They propose
a method for augmenting a trace-driven simulator to model
the effects of speculative execution, including most memory
references from the wrong path.

6. CONCLUSION
In this paper, we evaluate the effects wrong-path refer-

ences have on processor performance. Our evaluation reveals
that:

1. Modeling wrong-path memory references is important,
since not modeling them leads to errors of up to 10%
in IPC estimates.

2. Modeling wrong-path memory references will be more

important in future processors with longer memory la-
tencies and larger instruction windows.

3. In general, wrong-path memory references are benefi-
cial for processor performance because they prefetch
data into processor caches.

4. The dominant negative effect of wrong-path memory
references is the pollution they cause in the L2 cache.
Pollution in the first-level caches or bandwidth and
resource usage of wrong-path references do not signif-
icantly impact performance.

5. The prefetching benefit of wrong-path references can
be caused by different code structures. For the bench-
marks examined, the main benefit comes from wrong-
path prefetching of the data used by a loop iteration
before that iteration is executed on the correct-path.

In light of these results, to increase the performance of
processors, designers should focus on eliminating the L2
cache pollution caused by wrong-path memory references.
Perhaps compilers should also structure the code such that
wrong-path execution always provides prefetching benefits
for later correct-path execution, especially for references that
have a high probability of cache miss and around branches
that are frequently mispredicted.

7. REFERENCES
[1] R. I. Bahar and G. Albera. Performance analysis of

wrong-path data cache accesses. In Workshop on Perfor-
mance Analysis and its Impact on Design, 25th Annual
Intl. Symposium on Computer Architecture, 1998.

[2] R. Bhargava, L. K. John, and F. Matus. Accurately mod-
eling speculative instruction fetching in trace-driven sim-
ulation. In Proceedings of the IEEE Performance, Com-
puters and Communications Conference, pages 65–71,
1999.

[3] M. G. Butler. Aggressive Execution Engines for Surpass-
ing Single Basic Block Execution. PhD thesis, University
of Michigan, 1993.

[4] P.-Y. Chang, E. Hao, and Y. N. Patt. Predicting indi-
rect jumps using a target cache. In Proceedings of the
24th Annual International Symposium on Computer Ar-
chitecture, pages 274–283, 1997.

[5] S. McFarling. Combining branch predictors. Technical
Report TN-36, Digital Western Research Laboratory,
June 1993.

[6] M. Moudgill, J.-D. Wellman, and J. H. Moreno. An ap-
proach for quantifying the impact of not simulating mis-
predicted paths. In Workshop on Performance Analysis
and Its Impact in Design Workshop, 25th Annual Intl.
Symposium on Computer Architecture, June 1998.

[7] J. Pierce and T. Mudge. The effect of speculative exe-
cution on cache performance. In Proceedings of the Intl.
Parallel Processing Symposium, pages 172–179, 1994.

[8] J. Pierce and T. Mudge. Wrong-path instruction
prefetching. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microar-
chitecture, pages 165–175, 1996.

[9] T.-Y. Yeh and Y. N. Patt. Alternative implementations
of two-level adaptive branch prediction. In Proceedings of
the 19th Annual International Symposium on Computer
Architecture, pages 124–134, 1992.

8

